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Fig. 1: Since commonsense knowledge is not explicitly stated, it is challenging to conduct a scalable analysis of what commonsense
knowledge NLP models do (not) learn. We employ a knowledge graph to derive implicit commonsense in the model input as context
information. Then, we use it to align model behavior with human reasoning through multi-level interactive visualizations. Thereafter,
users can understand, diagnose, and edit specific knowledge areas where models do not perform well.

Abstract—Recently, large pretrained language models have achieved compelling performance on commonsense benchmarks.
Nevertheless, it is unclear what commonsense knowledge the models learn and whether they solely exploit spurious patterns. Feature
attributions are popular explainability techniques that identify important input concepts for model outputs. However, commonsense
knowledge tends to be implicit and rarely explicitly presented in inputs. These methods cannot infer models’ implicit reasoning over
mentioned concepts. We present CommonsenseVIS, a visual explanatory system that utilizes external commonsense knowledge bases
to contextualize model behavior for commonsense question-answering. Specifically, we extract relevant commonsense knowledge in
inputs as references to align model behavior with human knowledge. Our system features multi-level visualization and interactive model
probing and editing for different concepts and their underlying relations. Through a user study, we show that CommonsenseVIS helps
NLP experts conduct a systematic and scalable visual analysis of models’ relational reasoning over concepts in different situations.

Index Terms—Commonsense reasoning, visual analytics, XAI, natural language processing

1 INTRODUCTION

Commonsense knowledge describes the general facts and beliefs about
the world that are obvious and intuitive to most humans. It allows peo-
ple to smoothly explore and reason over everyday events and situations.
For example, “my parents are older than me” and “take an umbrella
when it rains”. Equipping machines with humanlike commonsense
reasoning abilities can benefit the development of social robots and
intelligent personal agents to assist humans in daily tasks.

Commonsense knowledge and reasoning have been important and
long-standing challenging topics in the natural language processing
(NLP) community. Many researchers have devoted their efforts to
building commonsense knowledge bases by extracting information
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from existing data sources (e.g., Wikipedia) or acquiring it from domain
experts or crowd workers. Generally, the commonsense knowledge
is represented as graphs, where nodes denote the conceptual entities
(e.g., cars, people) and links describe the relations between different
concepts (e.g., people “is capable of” driving cars). Building upon
the knowledge bases, a few benchmark datasets have been designed
to evaluate and improve NLP models for automated commonsense
reasoning. Particularly, question answering (QA) is the primary and
popular form of benchmarks [5, 7, 21, 57, 62, 63, 75].

Recent advances in large pre-trained language models (PLMs) of
NLP (e.g., BERT [65], GPT [11], and T5 [48]) have yielded impressive
and even human-level performance [73] on commonsense benchmarks.
However, these models lack interpretability and transparency, which
hinders model debugging and development for real-world applications.
It is unclear what commonsense knowledge the models have learned and
used in the process of reasoning, and whether they merely explore the
spurious correlation in the datasets. This issue has led to a rallying call
for explaining NLP models to reflect their real commonsense reasoning
capabilities and to build more robust benchmarks and models.

To help NLP experts understand the NLP model’s reasoning process,
feature attribution methods (e.g., LIME [51], SHAP [36]) are popu-
lar explainability techniques, which quantify the importance of input
features (e.g., words and phrases) to the model outputs. Therefore,
NLP experts can identify critical concepts for model predictions and
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determine whether they are aligned with human knowledge. We have
witnessed the success of these methods for various applications (e.g.,
sentiment analysis [12] and fake news detection [3]).

However, feature attribution methods cannot be directly applied to
explain models for commonsense reasoning tasks. First, they are in-
capable of revealing models’ relational reasoning over concepts (e.g.,
entities) in different contexts since their relations may require back-
ground knowledge and not be explicitly presented in the input. For
example, in “take an umbrella when it rains”, the inherent common-
sense is that the umbrella “is used for” protection from the rain, which
is not mentioned in the original statement. Moreover, contexts signif-
icantly influence the reasoning over these implicit relations between
concepts. For instance, depending on the weather, the umbrella can

“be used for” protection from the rain or sun. Furthermore, feature
attributions often focus on individual instances. Given the complexity
and vastness of the commonsense knowledge space the models operate
on, where concepts are intertwined with various relations and contexts,
it is challenging to scale up these methods to efficiently build high-level
abstractions of model behavior (e.g., under what contexts a relation
is well learned) and generalize model understanding to large datasets.
Furthermore, to better align the model with human knowledge and
expectations, it is crucial to not only understand its reasoning but also
actively inject and update the desired knowledge within the model, such
as using human feedback to finetune ChatGPT [45].

Visual analytics [2,8,71] have been an effective approach for summa-
rizing complex data characteristics and facilitating data-driven model
understanding at scale. Motivated by this, we design and develop a
visual analytics system, CommonsenseVIS, which enables NLP ex-
perts (e.g., model developers) to conduct a systematic and scalable
analysis of the commonsense reasoning capabilities of NLP models
(outlined in Figure 1). Going beyond many existing visual explana-
tion tools [2, 8, 66, 71] that focus on input-output behaviors of models,
our system integrates an external knowledge base to derive implicit
commonsense knowledge from the input and uses them as additional
contexts to align model behavior with human reasoning through inter-
active visualizations. We focus on commonsense question answering
(CQA), a popular task for evaluating commonsense reasoning abili-
ties, and showcase our system on the representative CSQA benchmark
dataset [62]. ConceptNet [59], a commonsense knowledge graph, is
used to extract commonsense knowledge from data as concept-relation
triplets for model contextualizations. Our system provides multi-level
visualizations of model behavior by comparing important input features
for model decisions with the extracted triplets from ConceptNet. At
the global level, the system adopts data transformation and projection
strategies to summarize model performance on questions and relations
and assesses the overall relation learning. At the subset level, the sys-
tem presents a contextual summary of the alignment between model
behavior and related ConceptNet knowledge for different subsets. And
at the local level, the system provides visual explanations for individual
instances and allows for model probing and editing to identify and en-
hance specific knowledge areas where models underperform. Through
a user study using CommonsenseQA (CSQA) [62] dataset, we show
that CommonsenseVIS can help NLP experts effectively understand,
diagnose, and edit model knowledge on concepts and their implicit
relations in different contexts.

The major contributions of this paper are summarized as follows:
• CommonsenseVIS, a visual analytics system that supports a sys-

tematic and scalable analysis of the model’s reasoning on com-
monsense tasks involving a large number of concepts and their
relations. Particularly, it helps align model behavior with human
reasoning through model contextualization, multi-level visualiza-
tions, and interactive model probing and editing.

• A user study with cases that shows the effectiveness and usability
of our system in revealing, diagnosing, and editing underlying
commonsense knowledge the language model does not learn.

2 RELATED WORK

We discuss related work in commonsense reasoning, explainable AI
methods, and visualization for NLP models.

2.1 Commonsense Reasoning
Here, we introduce the most relevant work, including large knowledge
graphs, benchmark datasets, and commonsense reasoning methods.

Large-scale knowledge graphs act as the representation of com-
monsense knowledge for NLP models to access and exploit. The
commonsense knowledge graphs (CSKGs) can be divided into two
categories, which are human-annotated CSKGs (e.g., ConceptNet [59],
ATOMIC [22, 53], and GLUCOSE [44]) and web content extracted
CSKGs [64,76]. ConceptNet [59] is a comprehensive large-scale knowl-
edge graph with over 3.4M entity-relation tuples to connect concepts
(words and phrases) by 36 types of relations. It primarily focuses on
taxonomic, lexical, and physical knowledge. It is collected by crowd-
sourcing and merged with high-quality knowledge databases. Here, we
use ConceptNet to reveal commonsense knowledge in data instances
and contextualize model behavior.

Benchmark datasets for evaluating NLP models’ commonsense
reasoning abilities typically involve question-answering tasks, reading
comprehension [21, 75], open-ended question answering [9, 32], and
multiple-choice questions [7, 52, 54, 57, 63]. One example is Comon-
senseQA (CSQA) dataset, which consists of 12k commonsense ques-
tions authored by crowd workers in a 5-way multiple-choice format.
Among the five answer choices, three are directly extracted from Con-
ceptNet, with one being the correct answer. Then the crowd workers
create two additional distractors, one from ConceptNet and another
authored by themselves. CSQA evaluates models mainly on factual and
physical commonsense relations (e.g., atlocation) between entities.
And we use CSQA to showcase how our system enables scalable and
systematic analysis of NLP models’ commonsense reasoning abilities.

Commonsense reasoning models include large language models
(LLMs) [11,26,27,35,48] pretrained on large text corpora. They achieve
impressive performance on commonsense benchmarks. Nevertheless,
these models exhibit limitations in their capacity to possess and effec-
tively utilize commonsense knowledge for reasoning tasks [6, 37]. To
enhance models’ commonsense knowledge, some methods [31, 73, 74]
integrate external knowledge bases and/or linguistic theories into the
models to provide more contexts and facts for improving model accu-
racy. In addition, pretrained language models can be used as knowledge
bases to generate clarification questions [56], commonsense explana-
tions [49], and prompts [34] to enhance commonsense reasoning. How-
ever, they do not explain what commonsense knowledge is injected
(un)successfully. And we present a model-agnostic explanation system
to systematically evaluate commonsense knowledge that these NLP
models possess and utilize for reasoning tasks.

2.2 Explainable AI Techniques for NLP
Explainable AI (XAI) is critical to promote model transparency and
reliability [4]. We focus on post-hoc model explanations via a model-
agnostic approach. One popular post-hoc explainability technique is
feature attribution [36, 51, 61], which quantifies the contribution of
input features to the model output. We use a model-agnostic method,
SHAP [36]. Another related direction is counterfactual analysis [25,72],
which uses examples to reverse the target label, helping understand
model decision boundaries. Our system enables question manipulation
to probe model behavior regarding specific concepts or relations.

While previous work [28, 77] has explained Natural Language Pro-
cessing (NLP) models via zero-shot or few-shot accuracy evaluations
on pre-trained language models, our research conducts a detailed, sys-
tematic analysis of model behavior on diverse commonsense concepts
and relations. Compared to other methods [13, 46, 50, 65] that design
auxiliary classification tasks to understand linguistic knowledge in NLP
models, we aim to reveal the role of commonsense knowledge in the
model’s reasoning process. Directly prompting large language models
helps probe the simple facts embedded in them. However, many NLP
models [27, 31, 35] cannot be easily prompted due to their inherent
designs. Finally, some studies [14, 40, 41] conduct causal analysis that
attributes a piece of knowledge to specific neurons in the models. How-
ever, these methods do not efficiently summarize how a model learns
different commonsense knowledge. Our system adopts the model-
agnostic feature attribution method to quantify model behavior and
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contextualizes it with a knowledge graph. It then employs multi-level
visualizations to facilitate systematic exploration of model behavior
across various commonsense concepts and relations.

2.3 Visualization for Understanding NLP Models
Visualizations can effectively help understand NLP models [1]. Model-
specific visualizations [20,24,42,60,67] reveal the model’s inner work-
ings, such as the behavior of neurons, layers, and attention maps. By
examining these visualizations, users can gain insights into hidden state
dynamics [60], the relationships between hidden states and words [42],
and diagnose model bias [67].

Many model-agnostic visualizations [2, 8, 17, 30, 69, 71] focus on
input-output model behavior and are generally applicable to different
models. For example, What-If Tool [71] allows users to understand
model behavior concerning feature importance, different inputs, and
other hypothetical situations. M2lens [69] characterizes intra- and
inter-modal interactions learned by multimodal models. Shared Inter-
est [8] compares the reasoning of models and humans using saliency
results and ground truths. DeepNLPVis [29] and MultiViz [30] present
multi-level visualizations to explore both the behavior and working
mechanisms of different NLP models across different tasks.

However, these studies do not provide insights into the commonsense
knowledge that models may (not) learn. To fill the gap, we propose a
model-agnostic approach that leverages multi-level visualization and
an external knowledge base to contextualize the implicit reasoning of
models over concepts and relations in commonsense questions.

3 DESIGN REQUIREMENTS

We aim to develop a visual analytics system to help NLP experts un-
derstand and diagnose commonsense reasoning capabilities of NLP
models in a systematic and scalable manner. Explaining such model
abilities helps users determine whether models are suitable and trust-
worthy for downstream applications and enhance specific knowledge
that models do not learn well. However, it is challenging to depict
and summarize the vast and complex space of commonsense knowl-
edge that models learn, as it is not directly presented in the input, and
concepts are entangled with various relations and contexts.

We first conducted a literature review on explainability techniques
[25, 36, 51, 72] and visual analytics [8, 19, 23, 71] for NLP, and com-
monsense reasoning [13, 59]. To further characterize users’ common
practices and needs, we collaborated with three NLP experts (E1-E3,
E1 is the coauthor) through regular weekly meetings for about six
months. E1 is a Ph.D. candidate who investigates commonsense knowl-
edge acquisition and reasoning. E2 has obtained a Ph.D. degree in HCI
and has rich experience in building human-centered interactive NLP
models. And E3 is a research scientist from an international media
company whose expertise is in explainable AI and visualization for
NLP. During the meetings, we asked them about 1) the general methods
of NLP model evaluation; 2) what types of explanations for models’
commonsense reasoning capabilities; and 3) the desired system task
support. Meanwhile, we developed our system prototypes iteratively
and collected their feedback for further improvement.

Current practice and limitations. Our users usually start with per-
formance metrics (e.g., accuracy) to locate data instances (esp., wrong
predictions) and manually summarize what commonsense knowledge
is needed for inference. Specifically, users identify important relations
and concepts for commonsense reasoning and combine performance
metrics with feature attribution methods to determine whether models
capture important concepts or superficial word associations. Moreover,
they can probe the models by modifying the data instances to verify
their hypotheses. However, this analysis process is tedious, mentally
demanding, and difficult to generalize to larger data subsets. They
desire a visual analytics tool to analyze what commonsense knowledge
is contained in data instances and (not) learned by NLP models.

R1. Reveal commonsense knowledge in data instances. Our
users need to distill the external commonsense knowledge from data
instances, which helps verify if model behavior aligns well with human
knowledge [8,23]. Since concepts and relations are critical components
of commonsense knowledge [13,59], the system should extract relevant

concepts and their relations in questions as references to understand
data itself and model behavior:

Q1: What concepts (e.g., entities) are mentioned in the instances?
Q2: What are the latent relations between the mentioned concepts?
R2. Summarize model performance on different concepts and

relations. Our users usually depend on accuracy scores to pinpoint
cases where models fail and prioritize exploring them. To scale up
the analysis of individual instances to large datasets, it is necessary to
summarize model performance from multiple aspects [8, 19, 71].

E3 said that a concept-driven summary can reveal what topics mod-
els perform well. E1 mentioned that compared to the vast concept
space, relations have more summative power and connect concepts
meaningfully. E3 suggested relating model performance to linguis-
tic contexts to assess their ability to use commonsense knowledge in
different situations. For instance, testing models on instances where
adults and children use staplers helps understand whether models can
distinguish between them. Therefore, the system should answer:

Q3: What concepts, relations, and their combinations are predicted
right or wrong by the models?

Q4: What are the contexts of the relations and concepts? What is
the model performance?

R3. Infer model relational reasoning over concepts based on
relevant commonsense knowledge. To develop a mental model about
models’ commonsense knowledge and reasoning, users need to first
use their own prior knowledge to build the relevant reasoning paths
that connect important words in statements. Then, they need to check
whether models capture these meaningful concepts in statements based
on their importance to model predictions. Although sometimes models
are correct, they may rely on task-unrelated linguistic features (e.g.,
stop words) to make decisions. Moreover, E2 and E3 thought that
to better surface the patterns of how models regard unmentioned re-
lations, it is necessary to show whether models attach importance to
the mentioned words in statements connected by those relations. By
concept-driven comparison between important concepts recognized
by models and humans, users can generate hypotheses about models’
relational reasoning over concepts:

Q5: What concepts are important for model predictions? Are they
reasonable?

Q6: What unexpressed relations are necessary for inference? Do
models cover the concepts connected by these relations?

Q7: What are the differences between the important concepts for
commonsense reasoning and for model predictions?

R4. Allow interactive probing and editing of NLP models. One
straightforward and useful way to understand and debug models is
interactively interrogating them [25, 71, 72]. To generate and verify the
what-if hypothesis about model behavior, users can conduct counter-
factual analysis by manipulating specific input components and seeing
how models react to these changes. This helps disentangle influences
of individual concepts in statements for model predictions and check
whether models are biased towards some concepts. Moreover, modi-
fying the input components can test the robustness of models against
noisy concepts and probe the underlying relations of interest that link
the mentioned concepts in the input. After model probing, users may
desire to conduct posthoc editing of model behavior to inject their
desired knowledge and make a flexible localized update about specific
knowledge areas that models do not learn well [15, 43].

Given the requirements, we consolidated a series of system tasks
that guides the systematic exploration of models’ commonsense rea-
soning capabilities: Initially, commonsense knowledge from data is
extracted as concept-relation triplets (R1). Then, the system summa-
rizes model performance across these concepts and relations (R2), and
further assesses the overall relation learning (R3). Next, it enables
users to pinpoint error instances related to specific concepts or relations
(R2). For these instances, the system summarizes the concepts con-
sidered important by models in varying contexts, aligning them with
those in the extracted triplets (R3). Moreover, visualization is utilized
in conjunction with model probing (R4) to comprehensively explain
models’ input-output behavior on these instances (R3). Finally, users
can bookmark instances for targeted model refinement (R4).
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4 SYSTEM & METHODS

Our system, CommonsenseVIS, leverages an external knowledge graph
to summarize and derive commonsense knowledge and facilitate multi-
level exploration and diagnosis of model behaviors in commonsense
question-answering tasks. We focus on question-answering tasks be-
cause they are a common evaluation method for natural language un-
derstanding, and most commonsense reasoning benchmarks adopt the
QA format [7, 27, 52, 54, 62, 63].

4.1 System Overview
Figure 2 provides an overview of our system. CommonsenseVIS takes
in QA instances and an NLP model to compute model answers. Then,
it identifies important concepts (i.e., words) in questions using feature
attribution methods and extracts relevant commonsense knowledge
from input data using an external knowledge base. This knowledge
helps align the model behavior with ConceptNet. The user interface
enables multi-level exploration, interactive probing, and editing.

4.2 System Data & Model
Here, we introduce the system input, including the QA data, model,
and external knowledge base for contextualizing model behavior.

QA data. Each QA instance contains a question concept, a target
concept (i.e., answer), alternative answers (if any), and a question stem.
Following the previous commonsense QA benchmarks [53, 62, 63],
concepts are defined as words, and question stems provides contexts
for the commonsense relations between the question and target concepts.
As shown in Figure 2A, the question concept is air conditioning, the
target concept is house, and air conditioning is located at the house.
And the context in the question stem is: “A man...watches the game
on Saturday...”. If a question concept is absent, knowledge graph
embedding methods [10] can be used to determine the relation strength
between the target concept and words in the question stem. The word
with the highest score becomes the question concept [31].

We utilize one representative commonsense QA benchmark,
CSQA [62], for demonstration. The dataset has 12,102 multiple-choice
questions, covering diverse topics and various forms of commonsense.
Each human-authored question contextualizes relations between a ques-
tion concept and a target concept (i.e., the correct answer among five
candidates). Triplets of these concepts and relations are drawn from
ConceptNet [59]. The most frequent question concepts are about peo-
ple, water, and animals, probing various relations such as spatial (41%)
and causal (23%). Questions are formulated in diverse forms (e.g.,
wh-questions, statements, and hypotheses) with 13 words on average.

QA model. Our system is designed to accommodate various NLP
models that select answers to given questions, as it focuses on the
input-output model behavior and we can adopt model-agnostic feature
attribution methods to quantify this behavior.

For the purpose of system demonstration, we have chosen Uni-
fiedQA1 [26,27] as an example for model analysis. It is an open-source,
general QA model that has been pre-trained across various QA datasets,
showing great generalization capabilities. We use SHAP to compute
the importance scores of model inputs because of its strong theoretical
foundation and widespread adoption in various domains.

Commonsense knowledge base. We utilize an external knowledge
base to capture the commonsense knowledge in the QA data, which
provides context for inferring the model’s implicit reasoning. To ensure
meaningful and helpful context for model analysis, the knowledge base
must sufficiently cover relevant commonsense reflected in the QA data.

We adopt ConceptNet [59] as an external resource, a large-scale
commonsense knowledge graph connecting concepts (i.e., words) with
relations. The graph integrates diverse knowledge sources with over 8
million nodes and over 21 million links. Particularly, it uses 36 general
relations (e.g., “IsA”, “UsedFor”) to connect words, mostly covering
taxonomic, lexical knowledge, and physical commonsense knowledge.
ConceptNet is widely used to enhance NLP models with commonsense
capabilities [18,31] and build reasoning benchmarks [33,62,63]. For ex-
ample, the questions and answers in CSQA are based on word-relation

1https://huggingface.co/allenai/unifiedqa-v2-t5-large-1363200

triplets (A, Relation, B) from ConceptNet. The prevalent relations
include AtLocation (A is typically located at B), Causes (A is the
typical cause for B), and CapableOf (A can typically do B). Moreover,
over 98% of words in CSQA questions are covered in ConceptNet.
Therefore, ConceptNet is a suitable resource for contextualizing model
behaviors on CSQA and other commonsense QA datasets [18].

4.3 Extract Relevant Commonsense Knowledge

To help users build a concrete understanding of commonsense ques-
tions and their connections with model behavior, we distill relevant
commonsense knowledge in data instances based on ConceptNet (R1).

The commonsense knowledge extraction consists of two major steps
(Figure 2B), including recognizing mentioned concepts in the questions
and constructing sub-graphs on the concepts. To reflect the reasoning
paths from the question concept to the target concept/answer, we per-
form tokenization of the question stem by n-gram (n = 1,2,32) and
match the tokens (i.e., words of length n) with the concepts in Concept-
Net to identify a set of candidate concepts for commonsense reasoning.
Since the matched concepts (with different lengths) may have overlaps,
we reduce the redundancy by keeping the longest matched concepts
in ConceptNet. Moreover, to enhance the robustness of matching, we
conduct soft matching by lemmatization and removal of stop words
and punctuations. For example, after token matching, the candidate
concepts in a question “A man wants air conditioning, ...” will be
{man, want, air conditioning, ...}. Next, those tokens are used to con-
struct a knowledge graph that contains the question concept and the
target concept to describe the reasoning process. By leveraging the
connections among the candidate concepts, question concept, and tar-
get concept in ConceptNet, we establish relational paths, employing
a two-hop relation search. We set the hop size to two to balance the
computation scalability and coverage of reasoning paths, following the
prior work [31, 74]. Thereafter, the resulting graph of concepts and
relations (in Figure 2B) describes the relevant commonsense knowledge
for the question. This graph is referred as ConceptNet knowledge.

4.4 Align Model Behavior with ConceptNet Knowledge

To help users build mental models about the model’s relational rea-
soning over concepts, we align the model input-output behavior with
ConceptNet knowledge regarding different concepts and relations (R3).
For concept alignment (Figure 2C), SHAP is used to calculate the im-
portance scores of the input concepts to the model outputs. And we call
those with large positive influences on the model predictions as model
concepts. Then, we compute the differences between the set of model
concepts and the set of ConceptNet concepts (i.e., question concepts and
concepts in question stems derived in Section 4.3). For relation align-
ment, we mainly consider the key relations (i.e., the relations between
question concepts and target concepts) for correctly answering the
questions (Figure 2C). Noticing that question concepts are included in
question stems as model inputs and target concepts are ground truths for
model outputs, we surface the model learning of their relations by inves-
tigating the relationships of model inputs and outputs. Specifically, the
inputs and outputs are high-dimensional embeddings that the model op-
erates on. And we compute the linear transformation matrix W ∈Rd×d′

between model input embeddings X ∈ RN×d and output embeddings
Y ∈ RN×d′

. Particularly, to reflect relations between question concepts
and target concepts encoded in W , we use those correctly-predicted
instances (i.e., model predictions P are equal to target concepts) as the
anchor points for the transformation. And we adopt a least-square error
objective to compute the linear matrix W : argminW∈Rd×d′ ||XW −Y ||2,
where (X ,Y ) = {(xi,yi) | TCi = Pi}, i = 1, ...,N.

The general idea is that the input-output relationships can be modeled
by translations in the model embedding space [10, 16]: if a model can
capture the relations between question concepts and target concepts,
then question concept embeddings transformed with the matrix W
should be close to target concept embeddings.

2To balance the coverage of meaningful phrases with varying lengths and
computational complexity, we limit maximum gram size to be three [38].
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Fig. 2: The system overview. (A) First, the QA data, NLP model, and knowledge graph are input into the system. (B) Then our system extracts
commonsense knowledge in data input based on ConceptNet, and calculates the feature importance scores for individual words in questions. (C)
We then align model behavior with ConceptNet knowledge regarding various concepts and underlying relations. (D) Finally, the results are integrated
into the interactive visualization system with extended support of model probing and model editing.

4.5 Model Editing
After identifying model deficits in specific commonsense knowledge,
we present editor networks to modify model parameters that can
correct problematic model answers (“reliability”), as well as other
semantically-equivalent questions (“generality”) without affecting un-
related knowledge much (“locality”). Particularly, editor networks
are neural networks trained to modify model parameters (from θ to
θ ′) with the objectives that maximize editing accuracy on both edit-
ing targets (xe,ye) and their equivalence (x′e,y

′
e) while minimizing

differences (KL divergence) in model predictions on locality exam-
ples (xloc,yloc) before and after the edits: Le =−logp′

θ
(y′e|x′e),Lloc =

KL(pθ (·|xloc)||p′θ (·|xloc)). The total loss is Ltotal = −we · Le + Lloc,
where we is a weight factor. The editing examples come from QA
pairs in CSQA train/val set, where their equivalences are generated
by popular data augmentation techniques, i.e., back-translation and
EDA [70]. Locality examples are independently sampled. We adopt
gradient decomposition techniques [43] to train editor networks on the
last two transformer layers of the model. More technical details are
included in Suppl. A.

4.6 User Interface of CommonsenseVIS
The user interface (Figure 3) enables a multi-level exploration of model
behavior following an overview-to-detail flow, contextualized by Con-
ceptNet. The exploration process starts with the Global View, which
summarizes model performance on different concepts and relations and
assesses overall relation learning. Users then can pinpoint error cases,
and the system summarizes the contexts of alignment between model
behavior and ConceptNet on different subsets. Upon selecting instance
subsets in the Global View or Subset View, Instance View shows statis-
tics and visual explanations for these instances. It facilitates interactive
model probing for comprehensive understanding and enables users
to bookmark particular instances for targeted model refinement. The
system uses red to encode the model error, green to indicate accuracy,
categorical colors to encode different relations and statistics.

4.6.1 Global View
Initially, users can refer to the Global View to gain an overview of
the model performance regarding different concepts and commonsense
relations contained in QA data (R1, R2). Specifically, the Global View
(Figure 3A) adopts different projection strategies to group question
stems and target concepts (i.e., answers) and visualize them as two
separate scatter plots. For projection, we choose UMAP [39] with
cosine similarity measures to cluster model embeddings for question
stems and target concepts because of its good processing speed and
preservation of embeddings’ global structure. After projection, similar
question stems (i.e., similar contextualizations of question concepts)
or target concepts are close to each other. To further analyze error
and relation distributions among these instances, users can adjust the

dot color schemes at the header. When the “Correctness” scheme is
selected, dots are colored in red and green to show distributions of
incorrect and correct instances. Alternatively, selecting the “Relation”
scheme applies categorical colors to the dots, highlighting instances
with different relations. Meanwhile, users can change projection mode
into “Correctness” or “Relation” at the header to accentuate the dif-
ferences between instances with high and low errors or instances with
varied relations. To achieve this, we utilize instance correctness and
relations between question concepts and target concepts as additional
labels for UMAP to perform supervised dimension reduction for clear
cluster separation in the scatter plots. To mitigate the overplotting in the
scatter plots, the system supports semantic zooming that allows users
to navigate specific areas of interest (e.g., error instances) within dense
data points. Moreover, users can filter out the instances with particular
relations by clicking the rectangles between the two scatter plots, where
each rectangle encodes relation frequency and accuracy. For each rect-
angle, we use green (instead of categorical colors) to emphasize model
accuracy for that relation, where the width of the green bar denotes
accuracy, and its height corresponds to relation frequency. The system
sorts these rectangles by relation frequency, allowing users to prioritize
model performance exploration of more prevalent relations.

Besides, the Global View assesses how the model regards latent
relations between questions and answers (R3). In the “Relation X
Transformed” projection mode (in Figure 3), the Global View separates
instances with different relations in the scatter plots and supports the
alignment and comparison of transformed question stems with target
concepts. If there is a good correspondence between transformed
clusters of question stems and target concepts in the scatter plots, then
the relations between question and target concepts could possibly be
learned. Finally, users may lasso a group of instances or click specific
relation bars to inspect the context summary in the Subset View.

Alternative design. We have considered an alternative—grouped
bar charts—to visualize the relations between question and target con-
cepts (Figure 4A). For each relation, green bars show accuracy while
blue bars encode frequency. The longer the bars, the larger the encoded
values. We collected experts’ feedback on this alternative. E1 said
that our final design using a single color looks simpler and cleaner. E3
commented that horizontally aligning green bars next to blue bars in the
grouped bar charts could be confusing since the frequency and accuracy
have different units of measurement. E2 reported that our final design
can reflect the proportion of different relations in the whole dataset
more clearly. In addition, it sorts the frequent relations in descending
order, helping prioritize the exploration.

4.6.2 Subset View

After selecting a group of instances with specific concepts or relations
in the Global View, users can utilize the Subset View to explore the
concept alignment between the model behavior and ConceptNet knowl-
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Fig. 3: The user interface of CommonsenseVIS: The Global View (A) summarizes the model performance by the projection plots of question
stems and target concepts and the relations between them. The Subset View (B) summarizes the context alignment between model behavior and
ConceptNet knowledge over different subsets. The Instance View (C) provides the statistics and detailed local explanations of instances selected
using Global View or Subset View. The current instance is highlighted as larger points in the Global View. The Instance View also enables users to
probe the model by editing the questions directly. Furthermore, users can bookmark instances and edit the model in the Model Editing Panel (D).

Fig. 4: Alternative designs in the system for QC-TC relations visualization
(A) and the cluster glyph in the Subset View (B).

edge across different subsets (R2). This view employs cluster glyphs
to analyze model behavior across instances with semantically similar
question concepts, question stems, and target concepts. Hierarchical
clustering of ConceptNet Numberbatch embeddings [59] is performed
for question stems, question concepts, and target concepts. We use Con-
ceptNet Numberbatch embeddings because they encode word meanings
based on ConceptNet’s semantic network and perform well on word-
relatedness benchmarks [59]. Then, users can scan through the cluster
glyphs and sneak peek into the corresponding model performance, the
important words for model decisions, and how they are aligned with
ConceptNet concepts (Figure 4B). For each cluster glyph, two bars
are presented at the top showing the average accuracy (between 0 and
1) and overlap ratio (between 0 and 1) between model concepts and
ConceptNet concepts. The lower parts display the differences between
the model and ConceptNet concepts. The first row displays the top
ConceptNet concepts frequently missed by the model. And an orange
bar is put to the left, revealing the frequency. Then, the second row
shows the frequent model concepts and their frequency (with blue bars).
To further explore concept associations across different questions, and
question and target concepts, their cluster glyphs are connected with
links if their data instances overlap—the wider the link, the greater
the shared data instances. To reduce the visual clutter of links, the
system allows users to adjust the cluster numbers at the header. When
users hover over a specific cluster glyph, the system highlights only the
connections relevant to that cluster, while keeping other links hidden.

Alternative design. Initially, we considered using a word cloud
(Figure 4B) to summarize the most frequent concepts (not) covered
by the model. And the word size relates to frequency. However, the
word cloud is not space-efficient and mixes the model concepts with
ConceptNet concepts and increases the visual complexity, making
the system less user-friendly. More importantly, our users prioritize
reading the concept words in plain style. Therefore, we chose our
current design.

4.6.3 Instance View
After selecting instances in the Global View or Subset View, the In-
stance View (Figure 3C) provides statistics and local explanations about
the model. It enables probing of the model with different inputs and
outputs to test its learning of concepts and commonsense relations (R1,
R4). The top stacked bars show model accuracy and average question
concept (QC) hit ratio (between 0 and 1). Users can click the green
(or gray) segments with the stacked bars to filter the data instances
correctly (or wrongly) predicted. The histogram below displays the
top frequent concepts considered important to the model. Users can
explore individual instances and model explanations with pagination.
The question stems that strongly contribute to model outputs are high-
lighted with green backgrounds, and question concept is underlined.
Model choices colored red indicate a wrong answer, and the ground
truth is colored green. Users can verify and generalize their findings by
searching for linguistic patterns in data instances that contain certain
words or structures (e.g., “many NOUN”) at the top. For instance, after
searching a question concept of interest, users can review the model
performance on different contextualizations (i.e., question stems) of
that concept and associated relations in the Global View. Then, further
detail can be investigated, including statistics and model explanations
for individual instances, in the Instance View.

For individual instances, users can edit them to form and validate
hypotheses about the model learning of relations. For example, if
the model is wrong, users may hover over different answer choices
to see their relations with ConceptNet concepts in question stems.
If both model answers and target concepts share the same relations
with question concepts, the model potentially does not understand the
contexts. Then, users can edit the text content of question stems and
individual answer choices (e.g., remove some words in questions and
change answer choices), followed by re-running the model on the edited
QA pairs. The new model answers will be highlighted in blue. By
examining the new results, users can validate whether the relations
between the question and target concepts are learned.

Users can bookmark instances about specific knowledge that the
model does not learn well. Then, they can conduct model editing in the
Model Editing Panel (Figure 3D), where information about questions,
relations, ground truths, and model results are summarized in a table.
Users can apply editing to instances of interest and inspect the editing
performance. Moreover, they can load the edited model for exploration.

5 EVALUATION

We conducted a user study to evaluate how CommonsenseVIS helps ex-
perts analyze the commonsense reasoning abilities of language models.
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Specifically, we invite 10 experts (E4-E13) to evaluate our system on a
commonsense reasoning benchmark. The experts are NLP researchers
or practitioners, and all of them have rich experience in natural language
understanding topics. We delay the introduction of their backgrounds
in Section 5.2. We evaluate the system by using a state-of-the-art
QA model UnifiedQA [27] and the CSQA [62] validation set. The
CSQA validation set contains 1,221 multiple-choice commonsense QA
instances, and the model performance is 71.00%. We also randomly
sampled 100 instances from the validation set to evaluate the com-
monsense coverage of ConceptNet for CSQA. For each instance, an
NLP expert (E14, not a co-author) from a tech company assessed if the
relational paths extracted from ConceptNet accurately covered the nec-
essary commonsense knowledge to answer the questions. The results
show that ConceptNet knowledge covered the necessary commonsense
in 91 out of 100 instances. More details are in Suppl. C.

Next, we present cases of using CommonsenseVIS for model analysis.
The cases were found by E4 and E5 during their system exploration of
model behavior in the user study. Afterward, we summarize the user
behaviors under the characterized system workflow. And we report
users’ ratings and feedback on the system designs and workflow.

5.1 Cases of Using CommonsenseVIS

Using CommonsenseVIS, experts discovered that the model has learned
the relation atlocation in the context of “office” and “room” properly
(details are in Suppl. D.1). However, it has limitations in cause relation
learning and “movie” context understanding.

5.1.1 Reveal Model Deficiencies in Cause Relation Learning
via Multi-level Exploration and Instance Editing

Global Summary (R1, R2) E4 first diagnosed the model learning of
causes relation by clicking the second largest bar between the scatter
plots (Figure 3A). He selected “Relation X Transformed” projection
scheme with the “correctness” coloring to examine the alignment
between question stem and target concept clusters considering model
performance (dashed area in Figure 3A). In the left scatter, E4 observed
that the transformed question stem projection does not form a neat
cluster and does not align well with the target concept projection. It
suggests insufficient learning of this relation. In addition, there is a
group of outliers at the top. Almost all of them have red color, which
indicates a low model accuracy. He wondered if it is the poor learning
of causes relation that causes such high errors. Afterward, E4 lassoed
these instances to inspect their details further in the Subset View.

Subset Exploration (R1, R2, R3) In the Subset View, E4 noticed
low model accuracy across all clusters, indicated by short green bars at
the top of glyphs in Figure 3B. Moreover, he spotted that question stem
clusters have long blue bars compared to short green bars, implying
that the model considers ConceptNet concepts in question stems but
still fails to answer correctly. This strengthened E4’s concerns over the
model learning of the cause relation. He clicked on the first question
stem cluster (Figure 3B) to explore its instances in the Instance View.

Instance Exploration and Editing (R1, R4) E4 first clicked the
gray part of the accuracy bars to focus on the incorrect instances. When
scanning the model concepts (with stop words filtered) in the histogram,
E4 found that the model usually attaches importance to words related to
mood and emotion, such as “happiness”, “exhaustion”, and “boredom”.
Given the low model accuracy, E4 surmised that the model is not aware
of the causes for human emotion. To verify his thought, he explored
and edited the detailed instances below. He found that most of these
questions are very short, directly asking QC-TC relations. For example,
as shown in Figure 3C, even after simplifying the original questions
to ask straight at the relation between “releasing built-up energy” and
“wonderful”, the model still chose the wrong answer “exhaustion”. He
bookmarked these instances for model editing.

Model Editing (R4) E4 concluded that emotion-related causes is
not sufficiently learned. And he applied model edits on the previously
saved instances in the Model Editing Panel (Figure 3D). He found that
the editing accuracy is 100% and model performance decrement is
small (i.e., 71.01%-70.93%=0.08%). He was satisfied with the edits.

5.1.2 Probe Model Limitations in Understanding Relation Con-
texts via Instance Exploration, Editing, and Querying

Global Summary

Subset Exploration

lassoed

Instance Level Probing

model result

after 
lasso

edit

D Model Editing

Model Editing

A

B

C

D

Fig. 5: The workflow E5 performed in case two: (A) E5 was interested in
the border area and lassoed these points for further inspection. (B) E5
noticed a cluster with lower accuracy and clicked to inspect further.

Global Summary (R1, R2) Another expert E5 used our system
to investigate under what circumstances the model might fail to use
contexts for relational reasoning over concepts. He first chose the
largest relation group (i.e., atlocation, the first green bar) in the
Global View (Figure 5A). And he found good correspondence between
question stem and target concept clusters under the “Relation X Trans-
formed” projection scheme. It implies good learning of atlocation
in general. E5 wondered when the model might fail to reason about
contexts. Then, he noticed that a group of dense red dots appear at
the bottom left (Figure 5A). The accuracy of this group is low, and E5
decided to lasso the group for further exploration.

Subset Exploration (R1, R2, R3) In the Subset View, E5 noticed
that QSs fall into three clusters with varied accuracies (as suggested
by the green bars) (Figure 5B). Particularly, he was interested in the
leftmost cluster since it has the lowest accuracy yet a similarly high
question stem hit ratio (also indicated by tall dark blue bars at the
left), compared to the other two. As he hovered over the cluster glyph
(Figure 5B), he discovered that the top model concepts are not so mean-
ingful (e.g., a, the, to, you). He speculated that the model frequently
relies on superficial information in question stems for answering the
questions. E5 then clicked the cluster to explore the instances and
model explanations.

Instance Manipulation (R1, R4) In the Instance View, E5 was
curious about the incorrect instances and thus clicked the gray parts
in the bar of model accuracy at the top to filter them. When exploring
the cases below, he found several interesting ones whose contexts
associate with “movie”. For example, in one question (Figure 5C),
E5 found that although “air conditioning” can also locate at “movie
theatre”, in this case, the model ignores the important context “watch
the game” (without a green background), which normally happens in
“house”. Then, he further modified this instance to verify his finding.
Specifically, through several edits around “watches” in the original
question (Figure 5C), the model still chooses “movie theatre” even
though those contents such as television or live shows usually do not
happen at “movie theatre”. Therefore, E5 thought that the model
attaches superficial information of “watch” to “movie” and does not
understand the contexts. In addition, other similar cases were observed
where the model chooses “movie” without understanding what normally
does not occur when watching movies, such as “curtains drawing back”
or “audiences clapping”.

Instance query & model editing (R4) E5 concluded that the model
probably does not understand the contexts around “movie” well. He
then located the related instances by searching keywords “movie” in the
search input of Instance View. He added those incorrect instances for
model editing in the Model Editing Panel (Figure 5D). Finally, he saw
that the editing accuracy is 100% and the model maintains nearly the
same performance as the original version (i.e., 70.84% v.s. 71.01%).
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5.2 User Study
We describe a user study that investigates how NLP experts utilize
different components of CommonsenseVIS to understand and diagnose
models’ commonsense reasoning capabilities. We also summarize their
feedback on our system workflow and designs.

5.2.1 Experiment Design
Participants We recruited 10 postgraduate students and alumni (eight
males and two females, age: 20-30, referred as E4-E13) from the
computer science department of a local university through emails and
word-of-mouth. They had at least two years of experience in developing
and evaluating natural language understanding models in academia or
industry. None of the participants had prior involvement in our system’s
design or usage. Each participant received a cash compensation of $13.

User tasks Participants were required to use CommonsenseVIS to
analyze UnifiedQA [26] on the CSQA validation set. They needed to
finish the following tasks: 1) gain an overview of model performance
for different concepts and relations; 2) Find a relation of interest and
assess the overall model learning of that relation; 3) Find a cluster of in-
stances in the question stem/target concept scatter plots with large/small
errors; 4) Summarize the model behavior on the cluster of instances;
5) Explore individual instances and infer if the model learns some
commonsense to reason about concepts and their underlying relations.

Procedures The whole study lasted about one hour. It started with
a 20-minute tutorial, where we collected participants’ demographics,
asked for their permission to use their log data generated during the
study, and introduced the background and the system usage. Afterward,
participants could freely explore the system and get familiar with it
(15 minutes). Then, they were asked to use our system to finish the
aforementioned tasks. They were encouraged to speak out their hy-
potheses and findings about the model following a think-aloud protocol
(20 minutes). During the task exploration, all their user interaction
activities (e.g., lasso, clicking, and hovering), together with the times-
tamps, were automatically recorded. Finally, participants needed to
finish a questionnaire about system workflow, designs, and usability on
a 5-point Likert scale. And we collected their post-study feedback on
the experience of using CommonsenseVIS.

5.2.2 Results and Analysis
We report the analysis of user log data, the questionnaire, and partici-
pants’ feedback. For user logs, we extracted the frequency and duration
of individual interactions (e.g., clicking) and aggregated them to derive
the total usage frequency and duration of corresponding views.

Model behavior contextualization and alignment Participants
found it reasonable and helpful to use ConceptNet to contextualize the
model’s commonsense reasoning abilities on the CSQA dataset.

Most participants agreed that CommonsenseVIS helped them un-
derstand the data (MeanQ1 = 4.70, SDQ1 = 0.67), model performance
(MeanQ2 = 4.60, SDQ2 = 0.70) regarding different types of common-
sense knowledge, and infer the model’s implicit reasoning over con-
cepts and their latent relations (MeanQ3 = 4.40, SDQ3 = 0.70). For
example, E6 appreciated the intuitive assessment of overall relation
learning by comparing transformed embeddings. E7 mentioned, “...
getting overlap between the set of entities mapped in ConceptNet and
model entities (concepts) can explain whether LMs are focusing on the
right things.” E8 added, “Aggregating the concept hit ratio and model
performance over the whole dataset and organizing them by relation is
a great way to understand the model from a global scale.” Moreover,
participants were fairly confident in their findings (MeanQ3 = 4.40,
SDQ3 = 0.70). Besides, the extra context information provided by the
ConceptNet helped develop hypotheses about model learning and probe
the models’ behavior on specific concepts and relations (E6, E9, E10).

Nevertheless, participants also raised some concerns over using
ConceptNet. E10 said that sometimes the retrieved relations from
ConceptNet are not guaranteed to be true reasoning paths for solving
the questions. Similarly, the extracted ConceptNet concepts were
considered generic or not informative for some questions (E8).

System usage analysis Participants thought that CommonsenseVIS
supports a more systematic and scalable analysis of model behavior,

Table 1: The frequencies and durations of user interactions.

View Frequency Duration (s)
Global View 59.63 ± 32.32 468.48 ± 289.01
Subset View 22.50 ± 17.12 66.82 ± 60.15

Instance View 33.38 ± 23.65 212.15 ± 204.15

compared to conventional analysis of ad-hoc instances. They appreci-
ated the multi-level model explanations, especially the global under-
standing of model behavior. As shown in Table 1, the Global View
which provides an overview of model behavior clearly dominates the
user interactions. It takes up 51.62% and 62.68% of total system in-
teraction frequency and duration respectively, exceeding those of the
Subset View and Instance View by a large margin. Moreover, as shown
in Figure 6, participants showed great interest in examining model per-
formance for different relations and projection modes. They spent much
time selecting and exploring instances in the scatter plots (indicated
by lasso and zoom interactions). The Subset View has the least user
interactions regarding frequency and duration. Participants usually used
it to quickly preview the details of different cluster glyphs (indicated
by “cluster_glyph” interactions). The Instance View was considered
to represent the traditional analysis of model behavior. Participants
generally used it to check different instances (indicated by “pagination”
interaction) and probe the model (indicated by “run_model” interac-
tion). Also, they spent the longest time searching words and phrases in
the Instance View (indicated by “search” interaction).

Patterns and insights Participants also reported many interesting
findings about the model behavior and dataset issues. For example,
the model was found to rely on spurious correlations to solve many
questions. For the question “Minerals can be obtained in what way
for a person who avoids leafy greens? (answer: multivitamin)”, the
model attached importance to “minerals obtained” and selects “ore”,
ignoring the important contexts “person” and “leafy green”. Also in
many instances, the model just focuses on some irrelevant words like
“what” and “at” (E9, E11). E10 suggested that we can convert the
questions into statements and check the model behavior change. “We
can eliminate those word biases by using counterfactuals.” (E11).

Besides, participants noticed that some CSQA questions are poorly
designed. These questions have multiple plausible answers or typos
that entirely invalidate the whole question instances. For example, E11
mentioned, for the question “Where is seaweed from?”, the model
outputs “sea”, while the true answer is defined as “ocean”. However,
both “sea” and “ocean” seem correct. And “‘what can a person with a
what can do?’ should’ve been ‘...with a watch...’” (E7).

Visual designs and interactions Participants generally agreed that
our system is easy to use, but it required some effort to learn. They
found the Instance View to be the most intuitive, followed by the Global
View. participants found the Instance View the most helpful in diagnos-
ing if the model uses proper information and learns relations between
question and target concepts. They thought that SHAP explanations
and model probing complement each other to deepen the model un-
derstanding. The Global View was thought useful in summarizing the
learning of relations and concepts, though it was sometimes a bit hard
to visually align dot clusters between the projection plots due to the
embedding rotation effect and scarcity of instances. The Subset View
was considered the most difficult to understand. But it was considered
helpful to compare the model concepts and ConceptNet concepts across
different subsets. Their ratings and detailed feedback are in Suppl. E.2.

Fig. 6: Average frequencies and durations of system interactions.
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Suggestions for improvement E10 desired an automatic zoom-
in function when lassoing dots in the Global View. E11 suggested
showing the neighboring dots when hovering over a dot. E8 proposed
to summarize concepts that are not covered by both ConceptNet and
the model. E7 recommended integrating other knowledge bases (e.g.,
ATOMIC [22, 53]) to broaden the commonsense coverage.

6 DISCUSSION

6.1 Human-AI Alignment with Contextualization
Considering that commonsense knowledge is implicit and not explicitly
stated (in model input), many interpretability techniques [8, 36], which
rely on existing model input and output, cannot explain models for
commonsense reasoning tasks. We introduce an external knowledge
graph, ConceptNet, to characterize the commonsense knowledge in
the model input with a group of concepts connected by different rela-
tions. This external knowledge is set as contextual information to align
model behavior with human commonsense knowledge and reasoning.
Given the large space of commonsense knowledge, achieving human-
AI alignment on commonsense reasoning tasks with additional contexts
is challenging. Our multi-level visualizations enable the exploration
of model behavior on different concepts and their underlying relations
in a scalable and systematic way. Moreover, visualizations produce
actionable insights into what specific knowledge the model underper-
forms and guides the model probing and editing. With pre-trained
language models becoming so large and powerful (e.g., ChatGPT), it
poses significant challenges to understand, diagnose, and adjust model
behavior after deployment. CommonsenseVIS presents “exploration-
explanation-editing” posthoc analysis pipeline to contextualize and
align model behavior with users’ expectations.

6.2 Commonsense Knowledge Bases for Contextualization
To reflect implicit commonsense knowledge in models, we use an exter-
nal knowledge graph (ConceptNet) as the contextual reference of com-
monsense knowledge and align the model behavior with the ConceptNet
knowledge. Given that ConceptNet is large and comprehensive with
good generality and CSQA is built upon ConceptNet, it is reasonable
and sufficient to use ConceptNet to cover the commonsense knowledge
in CSQA. Our quantitative evaluation with CSQA examples and quali-
tative users’ feedback also show that most commonsense knowledge in
CSQA questions can be grounded in ConceptNet, justifying its use in
our study. However, ConceptNet mainly contains taxonomic, lexical,
and physical commonsense. It has limitations in covering other com-
monsense knowledge, such as temporal and inferential commonsense,
thus impacting the effectiveness of model behavior contextualization
and visualization for understanding models’ true reasoning capabilities
in these knowledge areas. To support model analysis for more common-
sense reasoning benchmarks, we can integrate diverse commonsense
knowledge bases, such as ATOMIC [22, 53], GLUCOSE [44], or large
pretrained language models [56], to contextualize model behavior. It
is worth noting that to ensure meaningful model contextualization, we
should choose a knowledge base that has sufficient and relevant cover-
age of the commonsense knowledge in the target benchmark dataset.
Besides knowledge graphs, other types of commonsense knowledge

representations (e.g., arithmetic and logical operations) can be used to
improve the expressiveness of model behavior contextualization.

6.3 Generalizability and Scalability
We showcase CommonsenseVIS through a state-of-the-art QA language
model (i.e., UnifiedQA) and CSQA dataset. Our system can be im-
mediately used to explain any other language models for common-
sense question answering (CQA) since our explanations center around
the model’s input-output behavior with a model-agnostic approach.
Moreover, our system can be used for other CQA datasets. For ex-
ample, Social IQA [54] is a multiple-choice QA dataset about social
interactions in everyday events. It is built upon ATOMIC [22, 53]—a
commonsense knowledge graph about the causes and effects of differ-
ent events. Therefore, our system can integrate ATOMIC to retrieve
relevant causes or events for a given event extracted from questions in
Social IQA to contextualize the model’s social commonsense reasoning.

Furthermore, our model contextualization method has the potential to
support other commonsense reasoning tasks. For instance, for visual
question-answering (VQA) tasks, we can extract concepts (e.g., person,
dog) in the images. Then, by combining the concepts in the images
and text questions, we can utilize an external knowledge base to build
a relevant knowledge graph that covers these concepts. The resulting
knowledge graph can be used to contextualize models’ reasoning. Our
multi-level visual designs facilitate NLP model analysis for tasks like
machine translation. The scatter plots of the Global View can summa-
rize frequent associations and translation errors between source and
target concepts. Aligning embeddings helps assess translation quality.
Then, the Instance View shows correlations between source and target
sentences, enabling users to evaluate translation robustness.

Our approach faces scalability issues due to the computation cost of
feature attribution methods, which can take several hours to compute
SHAP for thousands of instances. To mitigate this impact, we have
precomputed and integrated SHAP values into the system to enable
seamless interactions for posthoc model analysis. To further speed
up the process, we can adopt faster feature attribution methods (e.g.,
CXplain [55]) and techniques like data sampling, caching, and parallel
computing. Regarding visual designs, the links between cluster glyphs
in the Subset View can be cluttered when the cluster number exceeds
five, requiring horizontal scrolling to examine different clusters.

6.4 Limitations and Future Work
CommonsenseVIS also has some limitations: 1) To extract relevant com-
monsense knowledge for answering a question, we build a sub-graph
containing the words in the question stem that are within two hops of
the question concept and answer using ConceptNet. However, some
concepts in the sub-graph may not so relevant for solving the question.
Also, some important concepts could be connected with the question
concept through multiple hops. 2) We perform n-gram tokenization to
match the words in a question with the words in ConceptNet. However,
this may exclude some longer phrases or sentences (in question stems
and answers), which affects the relation extraction between the question
and answer. 3) To reflect the model’s overall learning of relations, we
apply the translation to the input embedding and align it with the output
embedding. However, it is also possible that after linear transformation,
question and target concepts are not close to each other, but the models
still capture the relations between question and target concepts through
non-linear transformation. 4) Model behavior probing may lead to
incorrect model understanding [58]. To mitigate this, the system can
improve the reliability of probing [47,68] or integrate multiple explana-
tion methods to cross-validate the model insights discovered by model
probing. Moreover, larger-scale evaluation across different datasets and
longer-term user studies with our experts can further validate the model
understanding facilitated by our system.

In the future, we can improve the system designs to handle more
complex questions with multiple plausible answers and explanations,
often influenced by diverse arguments and opinions. Moreover, we can
improve the usability of CommonsenseVIS by displaying prediction
scores for answer choices in the Instance View and enhancing our
model editing methods for larger-scale editing.

7 CONCLUSION

We presented CommonsenseVIS to help NLP experts to conduct a
systematic and scalable analysis of the commonsense reasoning ca-
pabilities of language models. It utilized an external commonsense
knowledge base to contextualize and visualize the model behavior on
different concepts and underlying relations from different levels of
detail. Users can interactively probe and edit the model behavior to im-
prove the model’s reasoning abilities in specific knowledge areas. The
user study with cases showed the effectiveness of CommonsenseVIS for
diagnosing what commonsense knowledge a language model learns.
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A MODEL EDITING IMPLEMENTATION

Here, we introduce the details of technical implementation and eval-
uation of editor networks for model editing. We adopt the MEND
network [43] for model editing.

A.1 Editor networks
MEND leverages a collection of small auxiliary editing networks that
use a single desired input-output pair to make fast, local edits to pre-
trained models. Specifically, it uses the low-rank structure of fine-tuning
gradients to enable scalable and efficient editing of very large pretrained
language models on specified layers of transformers. MEND uses the
fact that gradients for MLPs are rank-1 matrix and apply the theory to
Transformers by summing elements over sequence indices. The model
editing gradient update function is derived as:

∇̃Wℓ =
B

∑
i=1

δ̃
i
ℓ+1ũi⊤

ℓ .

Where ũi
ℓ and δ̃ i

ℓ+1 are pseudo-activations and pseudo-delta by
taking the sequence sum of the gradient of the loss for batch i with
respect to the pre-activations at layer l + 1, and the sequence sum
of the inputs to layer l for batch element i. B is the number of total
batches. ∇̃Wℓ is the gradient update to be applied on the MLP layers of
transformers. For more details, please refer to the original paper [43].

A.2 Model editing training

Practically, for the T5-based QA model that we use 3, we only edit
the MLP layers of the last two encoder and decoder blocks of the
transformer. We follow the official implementation of MEND4 to build
our model and conduct the experiments.

To train editor networks that can edit our T5 model on CSQA, we
need to collect editing targets, equivalence examples, and locality ex-
amples. Specifically, editing targets contain a question and a target
choice, where the question comes from train set of CSQA dataset,
and the target choice does not necessarily be the ground truths. We
randomly sample one choice from five alternatives in the original QA
instance as the editing target. For equivalence examples generation,
we use data augmentation techniques to perturbate the original in-
stances to get meaning-preserving augmentations as much as possi-
ble. We use back-translation implemented in nlpaug5 to translate
the original sentences to German and then back to English using the
facebook/wmt19-en-de machine translation checkpoint. We also
adopt Easy Data Augmentation (EDA) [70] to do synonym replacement
and random insert/delete/replace on the original sentences to ensure the
robustness of the model training. For locality examples, we indepen-
dently sample negative examples different from editing targets from
the same original dataset.

Once the editor networks are trained, they can be applied to conduct
posthoc editing on the original model at inference time.

B SYSTEM INTERACTION DESIGNS

CommonsenseVIS offers various interactions to support multi-level
analysis of model behavior with details on demand.

Lasso and pan-and-zoom. In the Global View, users can lasso a
group of data instances in the scatter plots to examine the details in the
Subset View and Instance View. And users can use pan-and-zoom in
the scatter plots to navigate local clusters more easily.

Hovering and clicking. To make the interface cleaner and less
overwhelming, we hide lots of details, and users can hover or click to
see the details on demand. For example, in the Global View, users can
hover over the dots in the scatter plots and the relation bars in the middle
to see the pairs of question stems and target concepts and relation
accuracy, respectively. When hovering the cluster glyphs in the Subset
View, detailed concepts and statistics of the clusters, together with their

3https://github.com/allenai/unifiedqa
4https://github.com/eric-mitchell/mend/
5https://github.com/makcedward/nlpaug

connections with other clusters, will be displayed. In the Instance View,
hovering over the charts will display the detailed numbers. Also, users
can hover over the answer choices to query their relations with the
question stem concepts.

Moreover, users can filter or highlight the information by clicking.
For example, relation bars in the Global View, and stacked bars in
the Subset View can be clicked to filter data instances. In addition,
users can navigate through instances by clicking the pagination buttons.
Meanwhile, its corresponding dots and clusters will be highlighted in
the Global View and Subset View, respectively.

C EVALUATION OF COMMONSENSE KNOWLEDGE COVERAGE
OF CONCEPTNET

We conducted an evaluation using a random sample of 100 examples
drawn from the CSQA validation set6. We have invited an NLP expert
(E14, not our co-author) to evaluate the relational paths extracted by
our algorithm based on ConceptNet. For each QA instance, the expert
examined the QA instance and the extracted relational paths built by
retrieved concept-relation triplets from ConceptNet. Then, he decided
whether the paths could accurately cover the necessary commonsense
knowledge to answer the question. Finally, we calculated and reported
the proportion of instances for which the necessary commonsense
knowledge is covered by the extracted ConceptNet knowledge.

The results show that the retrieved ConceptNet knowledge can cover
the commonsense knowledge in 91 out of 100 instances. It further
helps validate the use of ConceptNet for model contextualization on
the CSQA dataset. However, although CSQA is built upon ConceptNet,
it still cannot cover some commonsense knowledge in the data. For
example, for the question “The potato might be the official vegetable of
what? (correct answer: Maryland)”, retrieved concept-relation triplets
from ConceptNet fail to build a connection between “potato” and
“Maryland” or “official vegetable”. In addition, for the question “Where
has the newest baseball stadium? (correct answer: Phoenix)”, although
retrieved concept-relation triplets can associate “baseball stadium“ with
different locations using AtLocation realation. However, it lacks the
knowledge to determine which city has the “newest” stadium.

D ADDITIONAL CASES OF USING CommonsenseVIS
D.1 Relation of atlocation regarding room and office is

relatively well-learned
Global Summary (R1, R2) After loading the system and dataset, the
expert E4 first referred to the Global View to explore the model perfor-
mance regarding different relations. After hovering over the green bars
between the scatter plots, he was able to quickly observe that although
there is an imbalanced relation distribution (as indicated by varied bar
height), accuracies for most relations are about 0.70 (Figure 7A). It
indicates that the model may have learned a fair amount of relations
between different concepts. Then, E4 felt curious about what relations
are and under what contexts the model learns well. He started with
the relation atlocation with the highest green bar at the top. After
clicking the bar, he selected the “Correctness X Tranformed” projection
mode and “Correctness” coloring scheme to explore the distribution of
the correctly-answered instances of atlocation in the question and
answer (target concept) scatter plots (Figure 7A). He noticed that there
is a large cluster with green dots in the answer scatter plot. He won-
dered whether the models have really learned atlocation between
question and target concepts in these instances. Therefore, he switched
to “Relation X Tranformed” projection mode to see how the relation
is learned by examining the correspondence between question stems
and target concepts after transformation (Figure 7A). And he discov-
ered two well-formed and well-aligned clusters in the two scatter plots,
which provides support for a good learning of atlocation relation.

Subset Exploration (R1, R2, R3) To further explore the contexts of
selected instances, E4 looked at the question stem cluster glyphs in the
Subset View (Figure 7B), where the green and blue bars nearly occupy
the two stacked bars at the top. It indicates a high model accuracy
and overlap between the model concepts and ConceptNet concepts.

6Data samples fo evaluation are available at https://bit.ly/3PCGbze
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To appear in IEEE Transactions on Visualization and Computer Graphics.

Fig. 7: Interactive exploration of case three by E4 using CommonsenseVIS. (A) E4 used “Correctness X Tranformed” projection mode to select the
correct instances and changed into “Relation X Tranformed” mode to visualize the corresponding result. (B) E4 went through the cluster glyphs in the
Subset View to gain general information about the model’s behavior over correctly answered subsets. (C) After clicking on a cluster, E4 was able to
check more statistics about this group on the top (the accuracy, the average question concept (QC) coverage ratio, and the frequent model concepts).
Then E4 quickly went through pages to check the detailed model behavior, such as feature importance scores, to check what kind of commonsense
knowledge the model learns sufficiently.

Moreover, he observed the yellow rectangles on the left of question
stem clusters are much shorter than the dark blue ones (Figure 7B),
confirming that very few ConceptNet concepts are not covered by the
model. He then hovered over the first cluster glyph to see the details of
those concepts, where words like “man” and “want” appear. He thought
that these concepts, not important to model predictions, might not affect
the reasoning about atlocation. Therefore, he hypothesized that the
question contexts are properly considered by the model. And he clicked
this glyph to explore detailed instances and their explanations in the
Instance View to verify his hypothesis. By scanning the top frequent
model concepts in the histogram (Figure 7C) (e.g., “where”, “what”,
“store”, “office”, “room”, “building”), he reasoned that many of these
instances of atlocation are “what”, “where” questions and associate
with “office” and “room”.

Fig. 8: Instances found by E4 confirmed his hypothesis that the relation
of atlocation regarding scenarios about room and office is well-learned
by the model.

Instance Exploration and Searching (R1, R4) Finally, through

exploration of individual questions in the Instance View, E4 found that
the model truly captures important words for answering commonsense
questions. For example, in Figure 8, SHAP values show “office” and
“put” as important contexts for where the “check” can be located, which
is “desk drawer”. Another example in Figure 8 shows that the model
properly considered contexts like “room” and “contemplation” for
where the “bookcases” should be located in a “study room”, which
aligns with human knowledge. Then, E4 reasoned that the model
has a good sense of atlocation in the situations of “office” and
“room”. And he lassoed all the instances of atlocation in the Global
View and typed “office” and “room” to search relevant instances in the
Instance View, where the model achieves 90.00% and 88.89% accuracy,
respectively (much higher than the overall 71.00% accuracy). E4 was
convinced that the model has learned the relation atlocation in the
context of “office” and “room” properly.

Fig. 9: Case two: Instances related to “movie” found by E5.

E ADDITIONAL USER STUDY RESULTS

E.1 User study questionnaire
The user study questionnaire is presented in Table 2.
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Table 2: The first section of our questionnaire is designed to collect
feedback on the system’s effectiveness in evaluating the model’s com-
monsense abilities (Q1-Q4). The second section is designed to evaluate
the usefulness and usability of Global View (Q5-Q7), Subset View (Q8-
Q10) and Instance View (Q11-Q13). The last section is designed to
evaluate personal opinions of our system (Q14-Q17). The original sen-
tences without the words in brackets are the positive statements at the
right end of the scale points, while the sentences with words in the
brackets are the negative statements at the left end.

Q1 The system can (cannot) help me identify the target com-
monsense knowledge in data instances.

Q2 The system does (does not) contextualize model performance
regarding different concepts and their underlying relations.

Q3 The system can (cannot) help me infer the model’s relational
reasoning over different concepts.

Q4 I am (not) confident in my findings about the model’s com-
monsense reasoning abilities.

Q5 The Global View can (cannot) help me relate model perfor-
mance to different concepts and relations.

Q6 The Global View can (cannot) help me infer how the relations
are learned by models.

Q7 The Global View is easy (difficult) to understand.
Q8 The Subset View can (cannot) help me align model behavior

with ConceptNet knowledge.
Q9 The Subset View can (cannot) help me summarize model

behavior on different groups of question concepts/question
stems/target concepts.

Q10 The Subset View is easy (difficult) to understand.
Q11 The Instance View can (cannot) help me diagnose if the

model uses proper information for reasoning.
Q12 The Instance View can (cannot) help me infer if a relation

between question concepts and target concepts is learned or
not.

Q13 The Instance View is easy (difficult) to understand.
Q14 It is easy (difficult) to learn the system.
Q15 It is easy (difficult) to use the system.
Q16 I will (will not) use it in the future for understanding and

diagnosing language models.
Q17 I will (will not) recommend this system to other colleagues

for understanding and diagnosing language models.

E.2 User ratings and feedback
E.2.1 Visual designs and interactions

As shown in Figure 10, participants generally agreed that our system is
easy to use (MeanQ15 = 4.20, SDQ15 = 1.03) while it required some ef-
forts for learning (MeanQ14 = 3.80, SDQ14 = 0.79). They were willing
to use (MeanQ16 = 4.50, SDQ16 = 0.85) and recommend our system
(MeanQ17 = 4.70, SDQ17 = 0.67) for understanding and diagnosing
commonsense reasoning capabilities of language models. The most in-
tuitive view of CommonsenseVIS is the Instance View, then the Global
View. And the Subset View was thought to be the most difficult to un-
derstand. We summarize participants’ feedback (as shown in Figure 11)
on our visual designs as follows.

For the Global View, participants found it quite useful for finding
relations/concepts with large/small prediction errors (MeanQ5 = 4.30,
SDQ5 = 0.95). “I can quickly observe the correctness distribution
among instances” (E6, E8, E12) and “narrow down to specific cluster
of instances” (E7, E9). And the question and answer scatter plots
helped them infer if the relations are generally learned well (MeanQ6 =
4.40, SDQ6 = 1.26). Furthermore, E6 and E8 added that the correctness
coloring of the dots (i.e., model accuracy) is really helpful when they
analyze relation learning and were not sure about the quality of the
alignment between questions and answers. However, some participants
reported that sometimes it is a bit hard to visually align and match
clusters of dots in the question and answer scatter plots due to the
embedding rotation effect (E10) and scarcity of instances (E11).

For the Subset View, participants thought it was a bit complex
(Mean10 = 3.20, SDQ10 = 0.63). And after they got familiar with it,
they considered it helpful to compare the model concepts and Concept-
Net concepts (MeanQ8 = 4.20, SDQ8 = 0.63) and summarize model

Fig. 10: The results of the questionnaire about overall impressions of our
system, including the effectiveness (Q1-Q4) and the usability (Q14-Q17).

behavior on different question concepts/question stems/target concepts
(MeanQ9 = 4.50, SDQ9 = 0.53). For example, E9 commented “The
hit ratio and top missed concepts are very useful in understanding
what types of concepts the model focuses on.” Some participants felt
Subset View could be a bit too informative sometimes. E10 suggested,

“Choosing the number of clusters and viewing the concepts and linkers
are a bit messy and too informative, can we simplify the design and
only the most impactful one?”

The Instance View was the most favored by participants for its intu-
itiveness and helpfulness in diagnosing if the model uses proper infor-
mation (MeanQ11 = 4.80, SDQ11 = 0.42) and learns relations between
question concepts and target concepts for reasoning (MeanQ12 = 4.50,
SDQ12 = 0.97). Participants generally thought that SHAP explanations
and model probing complement each other to deepen the model un-
derstanding. “I tested many examples and found that the explanation
results were very satisfactory. And the instance probing also helped me
to do some further investigation and testing on model behavior.” (E7).

“The model probing is a great tool to change the input to the model and
check the behavioral change of the model. This can be used to do some
causal analysis of concepts.” (E8).

Fig. 11: The results of the questionnaire about the helpfulness and
intuitiveness of using our system to evaluate commonsense reasoning
abilities regarding the Global View (Q5-Q7), the Subset View (Q8-Q10),
and the Instance View (Q11-Q13).
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