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Fig. 1: The user interface of InsightLens. The Chat Window (A) enables conversational interactions between users and LLMs. The
Insight Details (B) displays the currently focused insight’s summary with its relevant data context and supporting evidence. The Insight
Gallery (C) presents the corresponding related insights in terms of data and semantics. The Insight Minimap (D) visualizes the analysis
process chronologically based on each insight. The Topic Canvas (E) provides the hierarchical topic structure of all insights.

Abstract— The proliferation of large language models (LLMs) has revolutionized the capabilities of natural language interfaces (NLIs)
for data analysis. LLMs can perform multi-step and complex reasoning to generate data insights based on users’ analytic intents.
However, these insights often entangle with an abundance of contexts in analytic conversations such as code, visualizations, and
natural language explanations. This hinders efficient recording, organization, and navigation of insights within the current chat-based
LLM interfaces. In this paper, we first conduct a formative study with eight data analysts to understand their general workflow and pain
points of insight management during LLM-powered data analysis. Accordingly, we introduce InsightLens, an interactive system to
overcome such challenges. Built upon an LLM-agent-based framework that automates insight recording and organization along with
the analysis process, InsightLens visualizes the complex conversational contexts from multiple aspects to facilitate insight navigation. A
user study with twelve data analysts demonstrates the effectiveness of InsightLens, showing that it significantly reduces users’ manual
and cognitive effort without disrupting their conversational data analysis workflow, leading to a more efficient analysis experience.
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1 INTRODUCTION

Natural language interfaces (NLIs) for data analysis [12, 51] have re-
ceived much attention in recent years. Users express their analytic
intents and data-related questions in natural language (NL), prompting
NLIs to generate corresponding results or visualizations for further
analysis. Recently, large language models (LLMs), such as GPT-4 [2]
and LLaMA [69], have achieved unprecedented performance in NL
understanding, reasoning, and generation. They have become the back-
bones for NLIs (e.g., ChatGPT’s Advanced Data Analysis [53]) to
enhance conversational data analysis [20, 79], hereafter referred to as
LLM-powered data analysis.

During LLM-powered data analysis, LLMs can perform multi-step
and complex reasoning to derive data insights based on users’ queries
about the dataset and the previous conversational contexts [59]. This
process also generates various intermediate outputs, such as code, vi-
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sualizations, and NL explanations [11]. In a typical round of question
and answer (Q&A) within analytic conversations, users must carefully
examine and understand the insights generated by LLMs, which are usu-
ally entangled with an abundance of intermediate outputs. Furthermore,
data analysis is an exploratory and iterative procedure that commonly
involves multiple rounds of Q&A. As such, maintaining awareness and
keeping track of the entire analyses is essential for making informed
decisions and determining future exploration directions [61, 73]. This
emphasizes the need to record, organize, and navigate the insights
generated throughout the analysis process.

However, recording, organizing, and navigating insights within the
current chat-based LLM interfaces is tedious and inefficient, especially
given the intertwined data and semantic context involved. During data
analysis, insights need to be recorded with their supporting evidence
(i.e., intermediate outputs like visualizations) for sharing and reporting
purposes [7]. This requires users to navigate back and forth in the
conversation to locate the needed information. As analytic conver-
sations are usually lengthy and overwhelmed with various contexts,
this process often causes significant manual effort. Existing tools pri-
marily focus on tracking the provenance of a single form of context
(e.g., data [15], code [33], or visualization [44]) and are not tailored
for conversational interfaces. This limitation impedes efficient insight
understanding and recording that involves multiple forms of context
in the conversation. The situation is exacerbated for insight organiza-
tion and navigation. Given the increasing volume of LLM-generated
insights and the quickly expanding conversation length, users face
a substantial cognitive load. They struggle to manage and organize
these insights efficiently in a structured and readable manner, while
also maintaining convenient navigation. Although numerous systems
have emerged to help users organize and explore LLMs’ responses in
various scenarios [31, 64, 65], they often fall short in addressing the
challenges in data analysis conversations. Some studies focus only on
the semantic context (e.g., topic changes [36]) and ignore the data con-
text [26, 61]. Others focus on monitoring and verifying single rounds
of Q&A [32, 78], which is insufficient to comprehensively explore the
entire analysis process containing multi-round Q&A.

Therefore, our goal is to make conversational data analysis more
trackable and navigable for users, and to support on-the-fly record-
ing and organization of insights through a new interaction paradigm.
Informed by a formative interview study with eight experts of LLM-
powered data analysis, we summarize the challenges of existing chat-
based LLM interfaces for data analysis. Accordingly, we present In-
sightLens , an interactive system to facilitate insight recording, organi-
zation, and navigation. Rather than burdening users with manually man-
aging insights from the complex conversational contexts, InsightLens
adopts an LLM-agent-based framework for automatic recording and
organization of insights during conversational data analysis. Moreover,
InsightLens augments traditional chat-based interfaces with multi-level
and multi-faceted visualizations to aid in monitoring and navigating the
entire conversation. Specifically, it features an Insight Minimap and a
Topic Canvas that progressively evolve along with the analysis process
to reveal the temporal shifts of data and semantic context. They provide
on-the-fly feedback to guide data exploration without disrupting the
conversational workflow. To evaluate the effectiveness of InsightLens,
we conducted a technical evaluation and a user study. The technical
evaluation demonstrated a satisfactory performance of the agent-based
framework in accurately recording and organizing insights. The user
study revealed that the system can significantly reduce users’ manual
and cognitive effort for insight management and navigation in LLM-
powered data analysis, leading to an improved analysis experience.

In summary, the major contributions of our work are:
• A formative study that identifies critical challenges and summarizes

design requirements for insight management and navigation during
LLM-powered data analysis.

• InsightLens, a system that facilitates insight recording, organization,
and navigation through a novel LLM-agent-based framework and
interactive visualizations.

• A technical evaluation and a user study that demonstrate the effec-
tiveness of InsightLens.

2 RELATED WORK

2.1 NLIs for Data Analysis

Natural language is an intuitive modality for data interaction, signifi-
cantly lowering the barriers of data analysis [26]. Therefore, NLIs for
data analysis have been extensively studied in multiple fields including
databases [3], NLP [38], and visualization [19]. Chen et al. [7] divided
these systems into two types: NLIs for data queries and for visualiza-
tions. Following this categorization, we review previous works and
discuss recent advancements in LLM-powered data analysis.

NLIs for data queries convert NL utterances into machine-readable
formats like SQL and Python to execute on knowledge bases [9]. Early
systems relied on pattern-matching [83], parsing strategies [57], or rule-
based methods [14] to understand the semantic structures of queries [3].
Later, neural approaches [22,70] trained end-to-end networks to directly
generate executable SQL queries from NL inputs, addressing issues
like ambiguities or fuzzy linguistic coverage. Recently, training-free
strategies using LLMs have emerged, achieving state-of-the-art per-
formance [84] by leveraging LLMs’ reasoning abilities with minimal
in-context examples, as demonstrated by systems like Binder [9].

NLIs for visualizations (V-NLIs) [60, 62] take a step further by
generating visualizations based on query results. Introduced by Cox
et al. [12], these systems enable users to focus more on their data
rather than manipulating complex visual interfaces. Many efforts aim
to resolve ambiguities or underspecifications in input queries [19, 58].
For example, NL4DV [51] explicitly highlighted ambiguities in its
generated visualization specifications. Other research explores analytic
context to maintain a conversational flow [23,68]. Evizeon [26] applied
pragmatics principles and defined context transition types (i.e., continue,
retain, and shift). Based on this, Snowy [61] recommended context-
aware utterances for conversational visual analysis. Similarly, our work
also highlights data context transitions during analysis.

Recently, analytical assistants powered by LLMs have become a
prevalent paradigm [46, 78]. Many commercial business intelligence
(BI) platforms like Power BI [47] and Tableau [67] have integrated LLM
support for chat-based insight discovery and dashboard generation.
Empirical studies have explored conversational challenges [11] and
user behaviors [20] during LLM-powered data analysis. Automated
LLM-based tools have also been developed, such as InsightPilot [43] for
simplifying data exploration by generating insights and AI Threads [24]
for creating and refining charts through a multi-threaded chatbot.

Overall, the extensive studies on NLIs for data analysis provides a
solid foundation for our work. We focus on LLM-powered data analysis
for its recent prevalence and rather immature interaction schemes [21].
While conversations are natural and intuitive, this new paradigm brings
unique challenges that increase manual and cognitive load on users [32].
For example, recent studies have explored cognitive issues like tedious
code verification [78] and overwhelming response comprehension [11].
In this work, we aim to identify the pain points in conversational data
analysis and help users better manage insights along the way.

2.2 Analytic Provenance in Data Analysis

Analytic provenance tracks the history and evolution of various analytic
context, such as data [54] and visualizations [44], which helps users
better understand the analysis process. Ragan et al. [55] introduced an
organizational framework to characterize different types and purposes
of provenance, which Madanagopal et al. [44] further expanded by
mapping tasks to provenance types. Researchers have also proposed
various techniques for effective provenance management [52] and pre-
sentation [5]. For example, Berant et al. [4] used cell-based provenance
with NL utterances to explain queries over data tables, while DIY [50]
enabled users to evaluate NLIs’ correctness on databases by visualizing
data subset transformations. XNLI [16] provided interactive widgets to
depict visualization provenance in V-NLIs for explanation and diagno-
sis. More recently, WaitGPT [78] visualized the step-by-step generation
of data code to help users monitor and verify LLM-powered data analy-
sis. Our work extends these efforts by extracting and tracking insights
along with other analytic context, binding these insights with relevant
evidence (e.g., visualizations) to enhance user comprehension.



2.3 Exploration of LLM Responses
Limitations of the linear conversational structures pose challenges in
supporting complex information tasks with LLMs [40]. Therefore,
numerous visual interfaces have been introduced to facilitate LLM
response exploration [27, 41]. For example, Sensecape [65] supported
multi-level exploration and sensemaking, while Graphologue [31] cre-
ated interactive diagrams based on named entity recognition, both
enhancing users’ understanding of individual responses. Luminate [64]
further supported structured examination of multiple responses by gen-
erating a multi-dimensional design space for human-AI co-creation.
Additionally, C5 [36] and Memory Sandbox [28] addressed conver-
sational context management issues by visualizing topic transitions
and enabling transparent memory management, respectively. However,
these interfaces are not tailored for data analysis, limiting their effec-
tiveness in managing data insights. Our work extends this research by
offering multi-level and multi-faceted visualizations to facilitate insight
management and navigation in conversational data analysis.

3 FORMATIVE STUDY

The target users of our system are data analysts who utilize LLMs for
analytical tasks. To understand the pain points and challenges of exist-
ing chat-based interfaces, we conducted a formative interview study.
This study specifically examined how participants record, organize,
and navigate insights generated by LLMs during conversational data
analysis within a ChatGPT-like interface. Based on our findings, we
derived four design requirements to facilitate insight management.

3.1 Participants and Procedure
Participants. Eight data analysts from various domains, including
finance and e-commerce were interviewed (E1-8, 3 females and 5
males, age from 25 to 32). Four participants were senior data analysts,
while the remaining four were juniors or intermediates. All of them
had recently used LLMs for generating data visualizations or insights.

Settings. We created an analytical chatbot based on Open Inter-
preter [29] with GPT-4, akin to ChatGPT’s Advanced Data Analysis. It
could be prompted with queries to generate code for data processing
and visualization, and then interpret execution results to derive insights.

Procedure. Participants were asked to perform open-ended data
analysis [16] with the system to explore the movies dataset from Vega,
which contains 709 rows and 10 columns. Similar to their daily work,
the task was to derive and record data insights based on the dataset
and produce a clear, structured report. We collected their feedback on
the analysis experience, focusing on how they acquired information
from the conversation and organized and navigated the insights for
summarization or further exploration. We then identified challenges
and obstacles they encountered. The interviews were conducted online
and lasted about 60 to 80 minutes.

3.2 Findings
We observed how participants managed the generated insights through-
out the analysis process. For each single round of Q&A, they first
reviewed the textual response and visualizations (if any) to grasp the
main idea of the message. Some of them then scrolled back to examine
the code and its execution results, which were noted as being ‘helpful
for understanding and reproducibility’ (E5). Subsequently, participants
recorded and organized insights through copy-and-paste or screenshots
with documentation tools like Google Docs. After collecting enough
insights or finishing a specific analytic topic, they navigated previous
notes or screenshots to recap findings and plan next steps. However,
during the entire process, participants faced several common challenges
that decreased analysis efficiency, which are summarized below.

For clarity, we define the terminologies used in the paper.
• Analytic Context: Properties of the dataset (focused attributes and

values), user interactions (analytic intents and data-related questions),
intermediate outputs for analytic purposes (code, code outputs, visu-
alizations, and NL explanations), and insights derived by LLMs.

• Insight Evidence: Parts of the intermediate outputs generated by
LLMs that directly support each insight, including the specific piece
of code, code outputs, visualizations, and NL explanations.

C1: Laborious insight recording from overwhelming conversa-
tional contexts. Recording an insight requires both tediously ‘summa-
rizing the key idea of the lengthy response’ (E1) and ‘locating relevant
information like visualizations as supporting evidence’ (E3). For exam-
ple, E5 spent much time in scrolling back to copy code snippets and
their outputs ‘in case of reproducing the results in the future’. The situ-
ation was exacerbated when participants had to iteratively modify their
utterances to steer LLMs’ behavior, in which case the insight and its
evidence would span across multiple responses, causing extra effort for
excessive scrolling. Although LLMs could be explicitly prompted to
generate less verbose responses, balancing between comprehensiveness
and succinctness was hard to achieve, especially during data analy-
sis. As stated by E4, ‘I prefer comprehensive analyses for high-level
questions, but only need a quick answer for simple data queries.’

C2: Significant overhead for insight organization. Most partic-
ipants (7/8) organized recorded insights into meaningful subgroups
based on data attributes or analytic topics with external documentation
tools. This process was described as ‘troublesome and painstaking’
(E4), due to the necessity of manually annotating each insight with its
characteristics before synthesizing them collectively. Notably, some
participants (3/8) explicitly asked LLMs to help organize insights.
However, obtaining satisfactory results required iterative and nuanced
prompt engineering, which could disrupt the analysis flow. As stated
by E8, ‘I had to start another conversation specially used for organiza-
tion, otherwise the original analysis conversation would become too
messy.’ The frequent switching between different conversation threads
and documentation tools was ‘frustrating and time-consuming’ (E3).
Meanwhile, as the analysis progressed, the document itself became
overwhelmed with ‘many unordered texts and images’ (E5), which
made it even harder for structured organization.

C3: Inflexible and inefficient insight browsing and revisiting. Par-
ticipants constantly revisited and navigated previous findings through-
out the analysis process. They reported that the lack of ‘a high-level
insight overview’ (E7) hindered quick navigation and contextual under-
standing, especially when the conversation became lengthy. The extra
cognitive load for insight navigation mainly reflected in two aspects.
First, browsing insights was inconvenient. For example, E3 maintained
an outline of her discoveries in Word, but the document soon became
lengthy, forcing her to ‘repeatedly scroll up and down to browse each
section’, which ‘somewhat outweighed the advantages of organizing
insights’ (E3). Moreover, participants desired to prioritize significant
insights during navigation instead of ‘random meandering’ (E4), which
was not supported. Second, revisiting previous related insights and
their supporting evidence was cumbersome, which is a frequent need
during analysis for ‘comparison or reference’ (E6) and ‘inspiring new
discoveries’ (E8), as stated by many participants (5/8). Besides, many
participants (5/8) mentioned that they sometimes unknowingly stuck
in certain subsets of data attributes (E2, E5) or analytic topics (E1),
leading to potential biases. Such issues could have been mitigated if
users were ‘more aware of the data or semantic changes’ (E1).

3.3 Design Requirements
The findings indicate that data analysts struggle with current LLM
interfaces for insight management and navigation. To this end, we aim
to design a novel interactive system for better recording, organization,
and navigation of insights to facilitate a more efficient data analysis
experience. The design requirements can be summarized as follows.

R1: Support automatic insight recording from LLMs’ responses.
Manual recording of insights from the overwhelming conversation re-
quires users’ tedious examination and excessive scrolling (C1). There-
fore, the system should constantly monitor the conversation to automat-
ically summarize and record the generated insights and bind relevant
insight evidence (e.g., code outputs, visualizations) with them, regard-
less of whether LLMs’ responses are verbose or not.

R2: Facilitate effective and on-the-fly insight organization. Man-
ual organization of insights based on data attributes or analytic topics
is inefficient and troublesome (C2), especially when numerous in-
sights and messy analytic context are involved. Meanwhile, the context
switching between different applications or conversation threads incurs



extra cognitive load. Hence, the system should organize insights in a
non-intrusive manner along with the analysis process.

R3: Provide multi-level and multi-faceted insight navigation.
Browsing and revisiting previous insights from multiple aspects or
levels of detail are burdensome (C3). Therefore, the system should
support multi-faceted insight navigation (e.g., temporal, data attributes,
analytic topics). Additionally, insight interestingness [13] and context
transitions [61] should be highlighted to help users quickly identify sig-
nificant insights and enhance analytic comprehensiveness. To facilitate
easier navigation of the entire conversation, an insight-level overview
should be provided, with details on demand to inspect each insight with
its supporting evidence and other related insights.

R4: Adopt familiar and unobtrusive interactions and visual
designs for seamless data analysis. Users generally appreciate the
conversational manner for its intuitiveness and user-friendliness. There-
fore, augmenting existing conversational interfaces with seamlessly
integrated visualizations is more favorable than creating complex new
tools. To avoid steep learning curves and high switching costs, the sys-
tem should adopt familiar visual designs and non-intrusive interactions
without disrupting the original chat-based workflow.

4 INSIGHTLENS: FRAMEWORK

Informed by the summarized challenges and design requirements, we
propose automating the recording and organization of insights during
analysis, and displaying these insights with on-the-fly visualizations
to facilitate user navigation. To achieve this, we develop an LLM-
agent-based framework (Figure 2B) that comprises two components:
Insight Extraction (IE) and Insight Organization (IO), each powered
by an LLM-based agent [79]. The IE Agent takes each round of Q&A
within the conversation as input, extracts insights from LLMs’ raw
responses, and associates them with relevant evidence (R1). It then
evaluates the extracted insights’ interestingness based on their semantic
and statistical significance (R3). These insights are subsequently passed
to the IO Agent, which examines their data and semantic characteristics
and dynamically organizes them along with all previous insights (R2,
R3). The framework automatically runs in the background throughout
the analysis process without disrupting the conversational workflow
(R4). In this section, we describe the prompt engineering techniques
of our framework. Following best practices of designing LLM-based
agents, we adopt the ReAct [80] paradigm for prompting and equip the
agents with specialized tools and in-context memory, allowing them
to plan and execute actionable steps to perform various tasks. We use
OpenAI’s gpt-4-0125-preview model for implementation.

4.1 Insight Extraction
To support automatic insight extraction (R1), the IE Agent keeps moni-
toring the conversation as the analysis progresses (Figure 2B1). Upon
the user completing one round of Q&A with the analytical chatbot, the
IE Agent is responsible for examining the messages and outputting a
JSON-formatted insight list. Therefore, the core of the agent design
lies in its step-by-step prompt engineering, which is detailed below.

Providing background knowledge. Prior to task delineation, we in-
troduce the definitions of some key terminologies in data analysis such
as insight, insight evidence, and insight interestingness (Figure 2B1(a)),
drawing from previous literature [13, 75] and our formative study. This
allows the agent to be familiar with the essential domain knowledge,
facilitating task performance and output quality. Subsequently, we
provide a brief description of the dataset currently in play, including its
title and attributes. This ensures the agent’s focus of the conversation is
confined to the content relevant to the data and analytic context, instead
of extracting unrelated insights. Finally, we underscore the task and
the required output format with a few demonstration examples to better
leverage LLMs’ in-context learning [9] abilities for desired results.

Identifying/Refining insights. For each round of Q&A, we in-
struct the agent to carefully examine and determine whether it contains
insights and output an insight list (Figure 2B1(c)). Meanwhile, we
maintain the previously extracted insights as the agent’s memory (Fig-
ure 2B1(b)), which not only helps it leverage in-context learning to
extract and output insights in a consistent manner, but also enables

the refinement of previous insights. During conversational data anal-
ysis, users may not always pose a new question every time; instead,
they often iteratively adjust their prompts for clarification or enhance-
ment [11]. For example, a user may request an alternative visualization
to better illustrate a particular insight. Therefore, by directing the agent
to choose between two actions (i.e., ‘identify new insight’ or
‘refine existing insight’), we ensure a comprehensive analysis
of each round of Q&A without missing any follow-up information.
Moreover, rather than replicating LLMs’ verbose responses, the ex-
tracted insights are always summarized into concise sentences for in-
tuitive understanding. This eliminates users’ burden of extra prompt
engineering to retrieve quick answers for simple data queries, while
systematically extracting all insights for high-level questions.

Associating insight evidence. To automatically bind all relevant
insight evidence with each insight (Figure 2B1(d)), the agent is re-
quired to scrutinize the code, code outputs, visualizations, and NL
explanations in LLM responses, focusing on their data and semantic
implications. This allows the agent to locate the minimum but critical
parts that directly support each insight, which mitigates users’ manual
and cognitive load in understanding and recording insights without
having to examine the entire contexts. We provide in-context examples
for each type of insight evidence to improve the agent’s awareness and
performance of the task. Meanwhile, we instruct the agent to also take
previous insights into consideration for potential modifications, in case
that new evidence may emerge due to users’ iterative prompting.

Evaluating insight interestingness. Inspired by QuickInsights [13],
we judge insight interestingness (R3) by two factors: its semantic
significance (i.e., the subject of it should be important, such as a best-
selling product) and statistical significance (i.e., the relevant statistical
metrics of it should be notable, such as a high standard deviation).
1. The agent evaluates each insight’s semantic meaning and assigns

a semantic score Ssem of 1 to 5 based on its overall understand-
ing of the insight under the analytic context. For instance, if the
user focuses on product profit, the 1st most profitable product is
more significant than the 3rd one. We instruct the agent to con-
sider multiple aspects (i.e., significance, impact, relevance) [82]
for a comprehensive assessment, and provide in-context examples
(i.e., insight-score pairs) and previous scores to enhance scoring
performance and consistency.

2. The agent categorizes the insights and uses function calls to calculate
their corresponding statistical metrics (Figure 2B1(e)). We follow
prior works for categorizing insights [75] and mapping insight cate-
gories to suitable statistical metrics [61]. As insights may belong to
multiple categories, we employ a majority-vote strategy [66] to de-
termine the most prominent one. Then, the agent assigns a statistical
score Sstat of 1 to 5 based on the calculated metrics and heuristics
adopted from [60, 75]. For example, a high Pearson correlation
coefficient results in a high Sstat for correlation insights.

We combine two scores using a weighted average: S f inal = Ssem ·ω +
Sstat ·(1−ω), with the weight ω empirically set to 0.6. Finally, S f inal is
rounded to a scale of 1 to 5 (Figure 2B1(f)), with a rationale generated
by the agent. Higher scores indicate higher insight interestingness.

4.2 Insight Organization
To organize insights from multiple aspects on the fly (R2, R3), the
IO Agent receives the extracted insights (with relevant evidence) and
examines their data and semantic characteristics (Figure 2B2). It is
responsible for determining the corresponding data context and analytic
topics/subtopics of each insight. Based on the IO Agent’s outputs,
we sequentially categorize the insights into different subgroups. We
introduce our prompt techniques and topic classification method below.

Providing overall analysis domain. To ensure the identification
of valid data attributes and relevant analytic topics, we provide an
automatically generated NL description of the dataset, its first five rows,
and a list of its attributes beforehand (Figure 2B2(a)). This enables the
agent to gain an overall understanding of the current analysis domain.

Determining data context. The agent is tasked with identifying the
corresponding data attributes associated with each insight. To mitigate
the risk of fabricating non-existent attributes, we explicitly instruct the



Fig. 2: InsightLens consists of (A) a user interface and (B) an LLM-agent-based framework. While users are (A1) interacting with the analytical
chatbot, the Insight Extraction (IE) Agent (B1) takes each round of Q&A for insight extraction and evidence association, as well as interestingness
evaluation. Following this, the Insight Organization (IO) Agent (B2) organizes the insights by identifying their data context, analytic topics, and related
insights. Users can then (A2) inspect the extracted insights and (A3) explore the structured topics with progressively-evolving visualizations.

agent to restrict its selection to the given attribute list. Meanwhile, it is
required to identify the analytical actions (e.g., filtering and aggregation,
if any) applied to the data subset pertinent to each insight, based on the
insight evidence provided. Consequently, we can obtain each insight’s
data context (Figure 2B2(b)) to support users’ detailed inspection needs.

Classifying into topics/subtopics. Traditional topic modeling meth-
ods (e.g., LDA) are limited when handling short and sparse texts [71]
like insights. Also, they generate latent topics (i.e., collections of words)
that lack clear semantic meanings. Inspired by a recent work [36], we
adopt LLMs to sequentially assign human-readable topics (e.g., a topic
named Climate Analysis) for each insight (Figure 2B2(c)).
1. First, we maintain a list of current topics that are generated based

on previous insights as the agent’s memory.
2. For each new insight, the agent is instructed to select a suitable

topic from the list that best describes its semantic meaning. To
combine LLMs’ NL understanding abilities with a best practice
from prior literature [56], we provide cosine similarities between
the embeddings of the insight and each existing topic for reference,
enabling the agent to make more informed decisions.

3. In cases where no existing topic semantically describes the insight,
or when the topic list is initially empty, the agent must generate an
appropriate analytic topic by abstracting the insight into a concise
and high-level title. We prompt the agent to ensure that the new
topic falls within the provided analysis domain and is broad enough
to encompass similar subsequent insights. To avoid generating
identical or overlapping topics, the agent must utilize function calls
to calculate the cosine similarities between the candidate new topic
and each existing topic. We empirically set the similarity threshold
at 0.55. If any similarity score exceeds this threshold, the agent
must generate another new candidate topic. Once the new topic is
determined, it is added to the topic list for future selection.

4. Finally, the selected or generated analytic topic for the newly ex-
tracted insight is determined. We then recursively execute the above
steps to classify subtopics within the assigned main topic.

Notably, we use the all-MiniLM-L6-v1 model from Sentence Trans-
formers [56] for embedding calculation.

Identifying related insights. After obtaining the data context and
analytic topics of the extracted insights, we categorize them into sub-
groups to enable user navigation from different aspects. We also deter-
mine related insights across two dimensions (Figure 2B2(d)). First, we
identify data-related insights by comparing the intersections between
their associated data attributes. For example, an insight associated with
[MPG, Year, Origin] is closely related to another one associated

with [MPG, Year]. Second, we identify semantic-related insights
by comparing the cosine similarities between their embeddings. Con-
sequently, two lists of related insights are derived for each insight
(Figure 2B2(e)). By linking them together, we address the common
user need for easier reference or comparison of similar data findings.

5 INSIGHTLENS: USER INTERFACE

Built upon the LLM-agent-based framework, InsightLens features a
user interface (Figure 2A) to facilitate insight management and naviga-
tion during LLM-powered data analysis. In this section, we first present
an overview of the user interface, and then describe its core features,
visual designs, and interactions, including User Input (Figure 2A1),
Insight Inspection (Figure 2A2), and Topic Exploration (Figure 2A3).

5.1 User Interface Overview
The user interface of InsightLens features five coordinated views (Fig-
ure 1). It is designed to augment existing interfaces while maintaining
users’ original conversational workflow (R4). Given the unique nature
of conversations which display the most information at first glance, we
sought advice from data analysts in our formative study and iteratively
refined our visual designs. Consequently, we choose to adopt a ‘de-
tails first, overview last’ strategy [42] from left to right to make the
user interface more applicable to the conversational workflow, while
facilitating easy inspection and navigation of insights during analysis.

To achieve this, we keep the Chat Window (Figure 1A) similar to
ChatGPT on the left, where users can input their analytic intents and
view LLMs’ responses. Beside it, the Insight Details (Figure 1B) shows
an individual insight with its relevant data context and supporting evi-
dence for thorough inspection, while the Insight Gallery (Figure 1C)
displays its data- and semantic-related insights for convenient compar-
ison. Additionally, we employ a matrix-based design in the Insight
Minimap (Figure 1D) to chronologically visualize the analysis process.
Each row represents a unique insight, showcasing its data and seman-
tic characteristics. Finally, the Topic Canvas (Figure 1E) on the right
adopts a tree-based design to visualize the hierarchical topic structure,
enabling users to explore their findings across different analytic topics.

5.2 User Input & Insight Inspection
As the entry point of the user interface, users upload their datasets and
interact with the analytical chatbot in the Chat Window. Right beside it
lays the Insight Details and Insight Gallery arranged vertically to enable
detailed inspection for each insight. Along with the conversation flow,
we provide an overview of all extracted insights in the Insight Minimap,
which is constructed by insight rows vertically stacked in temporal order.



These four views are coordinated to scroll together seamlessly. By
clicking on each insight row, users can conveniently examine its details
and navigate between different parts of the conversation. Collectively,
these progressively-evolving visualizations support the following tasks
to facilitate multi-level and multi-faceted insight navigation without
disrupting the conversational workflow (R3, R4).

Inspecting insight details. As the conversation progresses, the
Insight Details updates with the latest extracted insight. It consists
of five sections (i.e., Data, Code, Code Output, Vis, and Insight) to
display the insight’s summary along with its associated data context and
evidence. These sections are collapsible to enable details on demand
and to satisfy different user background and preferences (e.g., some
analysts might be unfamiliar with coding and prefer to view only the
data context or visualizations). By default, the Code and Code Output
sections are collapsed to benefit non-technical users. Meanwhile, the
relevant NL explanations are highlighted in LLMs’ original responses
in the Chat Window. All these content are the minimum but critical
parts of the intermediate outputs to reduce users’ cognitive load. To
navigate among different insights, users can either 1) scroll in the Chat
Window or Insight Minimap or 2) click on the dots ( ) below each
response. Pinning ( ) is also supported to temporarily disable scrolling
coordination to focus on a specific insight.

Comparing related insights. In accordance with the currently
focused insight of the Insight Details, we present its related insights
in the Insight Gallery, ranked by similarity (or by temporal order
for ties). For simplicity, only the associated visualization and the
insight’s summary are displayed in each insight card. To enable a clear
understanding of the rationales behind each recommendation, we show
the relevant data attributes for data-related insights and similarity scores
for semantic-related insights. Users can click on each insight card in
the gallery to view its details for comparison or reference.

Revealing data coverage. On top of the minimap, we provide a
histogram (Figure 1D1) to visualize the distribution of the associated
insight counts across each data attribute. By observing the histogram,
users can intuitively understand which attributes have already been
extensively analyzed and which ones remain underexplored. Hovering
and sorting are also supported to view detailed information and quickly
locate the uncovered attributes. Therefore, users’ awareness of their
data coverage during analysis can significantly be improved.

Understanding context transitions. In each insight row of the
minimap (Figure 1D2), we represent its associated data attributes with
a set of connected points (corresponding to the above histogram). The
horizontal connecting lines can visually indicate the holistic considera-
tion of the involved attributes in each round of Q&A. We also provide
vertical reference lines activated by hovering over any point to maintain
alignment with the histogram. These insight rows not only enable a
quick review of each insight’s data context, but also showcase context
transitions throughout the analysis process, which reveal the change
of users’ focused attributes. For example, certain visual patterns can
represent different types of transitions like continue ( ), retain ( ),
and shift ( ) [61]. Grasping these transitions helps users track the
progress of analytic conversations [26], thereby mitigating the risk of
analytical biases, such as focusing excessively on specific data subsets.
In case that users expect to prioritize some attributes of interest, e.g.,
always monitoring ‘Worwide Gross’ for financial analysis, they can
drag the bars in the above histogram to adjust column order. Addition-
ally, we colorize each insight row to denote its analytic topic and reveal
the topic changes. Overall, this simple and intuitive design can be
seamlessly integrated into the conversational workflow and helps users
better review their analyses across both data and semantic dimensions.

Highlighting insight interestingness. To empower users to easily
identify and revisit high-quality or interesting insights, we visualize the
interestingness scores of each insight as horizontal bars (Figure 1D3),
as well as adding a category tag in each insight row for reference. As
the ‘interestingness’ of an insight can be subjective and varies among
users [60], the scores automatically assigned by LLMs may not accu-
rately reflect user preferences (i.e., whether they would find the insight
significant). To balance this, we provide LLMs’ explanations for the
rationales behind each interestingness score on hovering, and also allow

users to dynamically adjust the score by resizing the corresponding bar.
Therefore, this feature offers an alternative way for users to manage
and navigate previous insights, either based on automated evaluations
or their own judgment, similar to a ‘bookmark’ for insight significance.

5.3 Topic Exploration
As the highest-level overview, the Topic Canvas visualizes the hierar-
chical topic structure of all extracted insights. We choose the tree-based
design due to its simplicity and intuitiveness for topic organization and
exploration (R3, R4). The tree (without a root node) is structured into
two levels, representing main topics and their subtopics, respectively.
Each node indicates a topic/subtopic, differentiated by color and labeled
with its title and associated insight count. These nodes are visually
linked to their corresponding insight rows in the Insight Minimap. Ad-
ditionally, hovering over any node will highlight its included insights
(and subtopics, if any) and display a brief description for quick inspec-
tion of each topic’s essence. Overall, the Topic Canvas is automatically
updated along with the analysis process and coordinated with other
views to facilitate insight navigation across analytic topics.

6 TECHNICAL EVALUATION

The effectiveness of InsightLens depends on whether our framework can
successfully record and organize the LLM-generated insights. There-
fore, we conducted a technical evaluation focusing on (1) the coverage
of insight extraction, (2) the accuracy of insight evidence association,
and (3) the quality and accuracy of insight organization.

6.1 Experiment Settings
Dataset. We collected 10 datasets from reputable sources (6 from
Kaggle and 4 from Vega) with diverse analysis domains (e.g., education,
economics) and number of rows (µ = 1058,σ = 777) and columns
(µ = 14,σ = 5). We manually crafted 10 analytic queries for each
dataset, totaling to 100 samples. These queries, together with their
corresponding datasets, were input into our system, resulting in 104
extracted insights and 50 generated analytic topics (with 70 subtopics).

Methodology. To evaluate insight extraction, we first manually iden-
tified and labeled the key insights in the original responses generated
by the analytical chatbot, providing a ground truth for the insights ex-
tracted by the IE Agent. Then, we measured the ratio of covered labeled
insights to their total number (i.e., coverage). As the automatically
extracted insights were summarized by the IE Agent for easier under-
standing, we considered a labeled insight as covered if its semantic
meaning was contained in the corresponding extracted insight.

To evaluate evidence association, we measured the ratio of insights
with correctly associated evidence to the total number of extracted
insights (i.e., accuracy). If any part of the evidence (i.e., code, code
outputs, visualizations, and NL explanations) was incorrect or irrelevant
to its corresponding insight, we considered it as a negative sample. To
ensure robustness, we adopted a four-step verification process: (1)
confirming the exact match between the associated evidence and the
original response; (2) evaluating the correctness of data processing
through manual code review and execution results; (3) validating the
appropriateness of visualizations based on the ground truth processed
data; and (4) examining the relevance of the associated evidence to the
corresponding insight through manual assessment.

To evaluate insight organization, we focused on two aspects: data
and semantic characteristics (see Section 4.2). For data context, we
measured the ratio of insights with correctly identified data attributes
(and analytical actions, if any) to the total number of extracted insights
(i.e., accuracy). For analytic topics/subtopics, we utilized GPT-4 to
rate their quality, a widely adopted method in the NLP community for
assessing machine-generated texts that has proven effective in various
scenarios [10, 18, 39]. Specifically, we instructed GPT-4 to consider
multiple aspects of the topics (e.g., relevance, clarity, adaptability) for a
thorough evaluation. The detailed prompts can be found in the supple-
mental material. As the assignment of analytic topics is subjective and
lacks a definitive ground truth, we compared the rating scores of our
dynamically generated topics with a static baseline [36] (i.e., feeding
all insights to GPT-4 for topic generation). We then manually labeled



each insight with the topic list generated by our system as a ground
truth for evaluating topic classification accuracy.

6.2 Results
Metrics. For insight extraction, the coverage of the extracted insights
was 91.2% (i.e., covered 176 out of 193 labeled insights). For evidence
association, the accuracy of the associated insight evidence was 88.5%
(i.e., 92 corrects and 12 errors). For insight organization, the accuracy
of the identified data context was 88.5% (i.e., 92 corrects and 12
errors). Additionally, analytic topics generated by our system received
an average quality rating of 7.6 on a 10-point scale, surpassing the static
baseline (5.9). The accuracy of topic classification was 91.3% (i.e., 95
corrects and 9 errors). Overall, these statistical metrics demonstrated
the effectiveness and robustness of our LLM-agent-based framework.

Failure Cases Analysis. For insight extraction, we categorized the
17 failure cases into two types: (1) Missing Insights (8/17) and (2)
Missing Details (9/17). The IE Agent sometimes failed to extract all the
key insights; instead, it tended to only focus on the most significant ones.
For instance, with the query ‘compute the average discount percentage
offered by each smartphone brand’, only the brands with the highest and
lowest discounts were highlighted, while the analytical chatbot actually
mentioned numerous intermediate brands in its response. In other cases,
the agent over-summarized the information, omitting critical details.
An example of this is an extracted insight that merely acknowledged
the ‘top 10 most profitable movies’ without specifying their titles.

For evidence association, we observed two failure modes: (1) No
Code/Code Output (5/12) and (2) Incorrect NL Explanations (7/12).
In the former, the IE Agent did not include any associated code or
code output in its responses. In the latter, it provided incorrect NL
explanations that did not align with the insights, arising from either
fabricated sentences or an oversimplification of the original output.

For insight organization, we evaluated failures in terms of data con-
text accuracy and topic classification accuracy. Data context errors
primarily stemmed from Fabricating Attributes (9/12), with the remain-
der due to Missing Attributes (3/12). The former occurred when the
analytical chatbot created new attributes for specific queries (e.g., defin-
ing a Decade attribute from Year), leading to the IO Agent’s inability
to correctly identify the original dataset attributes. In contrast, the latter
was due to the agent’s occasional failure to fully deduce the associated
attributes. Regarding topic classification, the predominant issue was
Topic Disagreement (9/9), where humans and GPT-4 focused on differ-
ent aspects. Since insights could span multiple topics, such cases were
technically not ‘errors’ but rather outcomes of varying labeling criteria.

Overall, most failure cases discussed above can be ascribed to LLMs’
hallucinations. Such issues are particularly evident given the intricate
nature of our targeted tasks and the complex prompting techniques we
employ for our framework, which often lead to LLMs’ generation of
unexpected outputs. To mitigate this, we can incorporate more effective
instructions to make LLMs’ behavior more reliable and robust [81].

Summary. Despite the few failure cases, the results demonstrated
our framework’s high coverage, accuracy, and quality in automated
insight recording and organization. This can significantly reduce users’
manual and cognitive effort during conversational data analysis, estab-
lishing a solid foundation for the interactive features of InsightLens.

7 USER STUDY

To evaluate the effectiveness of InsightLens in facilitating insight man-
agement and navigation during LLM-powered data analysis, we con-
ducted a within-subjects user study. Specifically, we aimed to collect
users’ feedback on the effectiveness and usability of InsightLens’s
features, as well as its impact on the overall data analysis process.

7.1 Experiment Design
Participants and Setup. We recruited 12 data analysts (P1-12, 4
females and 8 males, age from 24 to 29) from the business intelligence
department of a local technology company. Their expertise levels in
data analysis ranged from junior/medium (8/12, < 5-year experience) to
senior (4/12, > 5-year experience). Their daily tasks included analyzing
datasets and reporting data findings, with proficiency in various tools

like Excel (12/12), Python (10/12), and Microsoft Power BI (8/12). All
of them had experience using LLMs (e.g., ChatGPT, Claude, Qwen)
for their work with varying frequencies (6 often, 4 sometimes, 2 rarely).
Each participant received $25 as compensation upon completion.

InsightLens’s visual support for insight management and navigation
primarily relies on the four coordinated views (i.e., Insight Details,
Insight Gallery, Insight Minimap, and Topic Canvas) to function as a
whole. Therefore, we set the comparative Baseline as the Chat Window
of InsightLens excluding all interactive features to evaluate their effects,
similar to prior studies on LLM data analysis interfaces [78]. This
ChatGPT-like Baseline mirrored the systems familiar to participants
for LLM-powered data analysis and maintained the same appearance
and chat functionality as InsightLens for a fair comparison. We also
provided a document editor for participants to record their findings.

Tasks and Datasets. Participants were asked to use both InsightLens
and Baseline to analyze two datasets: (1) a housing dataset (15 columns,
1460 rows) and (2) a colleges dataset (14 columns, 1214 rows). They
were instructed to perform open-ended data exploration on each dataset
to provide insights into (1) the housing market dynamics for real estate
agents, and (2) the various factors of US colleges for student applicants,
as if they were to provide a comprehensive data report within a week.
To mitigate learning effects while ensuring comparability of collected
data across different experiment sessions, we split each dataset into two
parts [35], each of which was allocated to one of the systems.

Procedure. Initially, participants were asked to sign a consent form
and fill out a pre-study questionnaire to collect their demographic
information. After that, we conducted a tutorial using an example
dataset to introduce the features of both systems. Participants were then
given adequate time to familiarize themselves with each system, during
which they were encouraged to raise any questions or concerns.

Then, participants were requested to use both systems across two
datasets (and tasks). We counterbalanced the order of the systems and
datasets (4=2x2 sessions in total) to mitigate learning effects. Each
session lasted 15 minutes and was screen- and audio-recorded as system
logs. Participants were also encouraged to think aloud about their
thoughts and findings during the analysis process.

Finally, participants were required to complete a post-study ques-
tionnaire using a 5-point Likert scale, followed by a semi-structured
interview to comprehend their ratings and collect qualitative feedback
on the effectiveness, usability, and potential impact of the system on
their daily workflow. The entire study lasted about 120 minutes.

Measures. We collected 48(=12x4) recordings and system logs.
To complement participants’ qualitative feedback, we employed the
following measures: (1) number of recorded insights, (2) number of
unique data attributes explored, and (3) number of unique analytic
topics explored. These measures were informed by previous litera-
ture [15, 49] and offered quantitative evidence for our analysis. To
ensure methodological consistency, we utilized the same prompting
techniques of InsightLens on Baseline for data processing.

7.2 Results
All participants completed four experiment sessions successfully. Based
on their qualitative feedback and the collected quantitative measures,
we discuss the effectiveness of InsightLens in facilitating insight man-
agement and navigation (Figure 3). We then report InsightLens’s feature
effectiveness, system usability, and impact on data analysis (Figure 4).

Support for Insight Management. The effectiveness of InsightLens
in facilitating insight management was appreciated by all participants
(µ = 4.67 > 2.67, p = .002). Recording insights was much easier in
InsightLens, whereas Baseline forced participants to manually scruti-
nize and summarize LLMs’ lengthy responses. P3 expressed his favor
for ‘the dots below each message’ that ‘reminded him of missed out
insights’. We also observed that participants constantly referred to
the Insight Details to review and record the relevant insight evidence,
which allowed them to ‘easily see the involved attributes and charts
without scrolling up and down’ (P10). For organizing insights, the
progressively updating Topic Canvas and Insight Minimap significantly
eased participants’ burden, mitigating the need for ‘resorting to tools
like Word’ (P5) and ‘summarizing an insight outline’ (P6).



Fig. 3: The results of the measures and qualitative ratings regarding
InsightLens’s support for insight management and navigation.

Fig. 4: The results of the questionnaire regarding InsightLens’s effective-
ness, usability, and impact on data analysis.

Additionally, one of our measures reinforced InsightLens’s support
for insight recording. Specifically, participants recorded more insights
using InsightLens compared to Baseline (Task 1: µ = 10.4 > 7.4, p =
.002; Task 2: µ = 11.1 > 7.3, p = .005). We ascribed the observed
significant difference to InsightLens’s support for reducing the time
needed for locating insights and their relevant evidence, thereby leading
to more insights recorded within a limited time frame.

Support for Insight Navigation. InsightLens was rated as highly
effective in reviewing and navigating previous insights (µ = 4.92 >
2.25, p = .002). Participants highly valued InsightLens’s features for
navigating insights from different aspects. For example, P4 appreciated

‘tracking her findings by time order in the minimap’, while ‘using the
baseline required her to scroll back and forth to grasp what she explored
before’. During open-ended data exploration, participants recognized
the importance of maintaining awareness of the overall analysis flow,
which avoided ‘repetitive analyses on previously explored topics’ (P8).

Interestingly, the quantitative measures revealed the potential expan-
sion on participants’ data and analytic coverage due to their improved
awareness of the analyses. When using InsightLens, they explored more
data attributes (Task 1: µ = 12.4 > 9.3, p = .006; Task 2: µ = 12.3 >
9.1, p = .012) and analytic topics (Task 1: µ = 6.5 > 5.3, p = .03; Task
2: µ = 5.8 > 4.3, p = .035) than Baseline. During the experiments, we
constantly noticed that participants checked and navigated in the Insight
Minimap or Topic Canvas before posing their next query. Consequently,
these observed significant differences implied participants’ tendency to
analyze more comprehensively when provided with easier navigation of
the recorded insights organized across data and semantic dimensions.

Feature Effectiveness. Overall, the features of InsightLens were
well-received by most participants. Firstly, the Insight Details (Q1) was
appreciated by participants for allowing them to ‘quickly obtain an in-

sight summary without manually reading every piece of messages’ (P5,
P7). Also, the associated insight evidence such as code snippets elimi-
nated their need to ‘scroll back to find that specific line of code for data
transformation’ (P6) to comprehensively record the insight. Secondly,
the Insight Gallery (Q2) helped participants review related insights con-
veniently. P8 found it particularly useful for ‘understanding attribute
relationships when dealing with multiple similar insights’, while P3
likened it to ‘a menu tool’ that enabled him to review different visual-
ization types for similar insights. However, some participants found
it less beneficial (P2, P4) due to the rather short analysis time allotted
for the experiments. Thirdly, the Insight Minimap (Q3) was constantly
praised by most participants (8/12) as ‘the most useful feature’ (P1). P9
described it as ‘being very innovative and reminded him of the minimap
in VS Code’, while others favored its ‘clear presentation of covered
data attributes’ (P2, P4, P7, P12) and ‘color encodings to reveal topic
changes’ (P5). This made the analysis process ‘more structured and
thorough’ (P11). Additionally, the interestingness bars enabled partici-
pants to discard trivial insights. For example, P4 identified an insight
with an extremely low interestingness score about a negligible attribute
relationship ‘caused by an accidental query’. Finally, the Topic Canvas
(Q4) reduced participants’ manual and cognitive effort to organize in-
sights. The generated topics were reported as ‘being reasonable and
intuitive’ that ‘decreased the chaos of the overwhelming conversation’
(P10). Moreover, viewing the tree-based topic structure gave P3 a
sense of ‘solving the open-ended task from various angles’ - aiding
comprehensive thinking - though some preferred relying on personal
judgment rather than ‘being disturbed by the organized topics’ (P5).

System Usability. All participants found InsightLens easy to learn
(Q5) and use (Q6), and were willing to integrate it into their daily
workflow (Q7). The visual designs were praised as ‘very intuitive and
user-friendly’ (P3, P7) without ‘causing steep learning curves’ (P1).
P9 noted that the views looked so natural that ‘any professionals could
understand its main features at first glance’. Meanwhile, participants
also suggested improvements for InsightLens. For example, P4 wished
to intervene the organization process by ‘proposing her own topics’, and
P11 expected to ‘combine certain insights for more in-depth analysis’.

Impact on Data Analysis. We examined InsightLens’s impact on
LLM-powered data analysis workflows for fluidity, workload, and
understanding. Firstly, participants agreed that InsightLens was unob-
trusive and did not disrupt their conversational interactions (Q8). P9
noted, ‘he just chatted with LLMs as usual, and the views updated au-
tomatically without interference’, while P7 described it as ‘essentially
a chat interface augmented with useful plugins’. Secondly, InsightLens
reduced manual and cognitive load (Q9), alleviating issues like ‘exces-
sive scrolling’ (P2) and ‘memorizing insights in mind’ (P12). Recording
and organizing insights on the fly helped participants ‘focus more on the
analysis itself rather than constant context switching’ (P10). Finally,
InsightLens improved participants’ understanding of LLM-generated
analyses (Q10). P6 remarked, ‘it felt like she was more involved in the
analysis process by inspecting progressive changes in views, instead of
merely inputting queries and waiting for LLMs to handle everything’.
Thus, InsightLens helped strike a balance between automation and hu-
man agency, thereby increasing users’ understanding and engagement.

7.3 Observed Behaviors
We observed two prominent workflow patterns adopted by different
participants when using InsightLens for data analysis.

User-Initiated Workflow. Participants with a clear analysis goal
often posed sequential queries based on their own judgment and prefer-
ences with minimal system intervention. For example, P5 explored the
colleges dataset focusing on how college ownership influenced factors
like student quality and financial condition. Here, the Insight Minimap
and Topic Canvas primarily served as structured and organized ways
for reviewing previous insights rather than inspiring new discoveries.
The construction of the topic tree mainly progressed from bottom (in-
sights) to top (topics) with more subtopics than main topics, revealing
a depth-oriented exploration pattern.

System-Initiated Workflow. Participants without a specific aim,
often due to unfamiliarity with the analysis domain, initially posed



multiple random queries to ‘make a draft’ (P1). They then inspected
the Insight Minimap and Topic Canvas to gain an overview of their
analyses and observe potential biases (e.g., certain attributes/topics may
have been thoroughly explored while others remain overlooked) to plan
future explorations. Therefore, the construction of the topic tree was
now from top to bottom with many topics scattered around and few
subtopics, reflecting a breadth-oriented exploration pattern.

8 DISCUSSION

8.1 Design Implications
Integrate data and semantic context for enhanced understanding.
Given the limitations of linear chat-based interfaces, managing LLMs’
contexts for complex tasks has gained popularity in VIS and HCI [31,
36,65]. Unlike existing works that primarily extract semantic structures,
InsightLens further integrates data context - crucial for data analysis -
including data attributes and analytical actions. We visualize dynamic
data and semantic context simultaneously in a minimap, allowing users
to quickly grasp the analysis process. Our user study shows that this
integration not only aids in reviewing and navigating insights but also
potentially expands data analysts’ data and analytic coverage, leading
to more comprehensive results in exploratory data analysis.

Provide follow-up analytic guidance for data exploration. In
our user study, many participants (6/12) suggested incorporating query
recommendations, particularly for unfamiliar datasets (i.e., the ‘cold
start’ issue). Prior research has extensively explored analytic guid-
ance [61, 73], which can be improved with LLMs’ capabilities [20].
InsightLens’s support for organizing insights on the fly can establish a
robust foundation for context-aware assistance. For example, integrat-
ing another agent into our framework can generate tailored suggestions
by considering analysts’ background, goals, and current focused topics
and attributes, thereby deepening or broadening their analyses.

Balance between flexibility and complexity of interaction
paradigms. Our design principle maintains a conversational work-
flow primarily through natural language. However, we recognize the
potential of other modalities for NLI-based data analysis (e.g., direct
manipulations [62] and sticky cells [76]). For example, some par-
ticipants in our user study expected to modify the Topic Canvas by
adding or editing nodes, akin to mind maps. While such features could
enhance LLM interaction flexibility [65], they may also introduce
complexities [34]. Therefore, we aim to achieve a trade-off between
NLIs’ intuitiveness and visualizations’ expressiveness. Future research
could further explore how to balance these aspects in designing LLM
interaction paradigms for data analysis.

8.2 More Application Scenarios
Incorporating LLMs into data analysis is an emerging but promising
paradigm. With LLMs’ growing reasoning capabilities and extended
context windows [6], data analysts can potentially conduct longer and
more in-depth analyses on intricate datasets. Such envisions neces-
sitate smart strategies to manage complex analytic contexts. While
InsightLens focuses on augmenting conversational interfaces, its design
rationales can be adapted to traditional data analysis workspaces, such
as BI platforms [47] and computational notebooks [37]. For example, in
BI platforms like Tableau [67], users conduct visual analysis through a
dashboard and a sidebar-based analytical assistant. An Insight Minimap
can serve as an analytic timeline, allowing users to revisit previous
visualization states and maintain awareness of the entire analysis pro-
cess. Additionally, within Jupyter Notebooks, users typically interact
with LLMs via code comments or magic commands [46] to perform
exploratory data analysis. Constructing a Topic Canvas that reflects
the semantics of code and markdown text can enable a non-linear,
tree-based navigation of notebook cells, offering an innovative way to
organize messy notebooks. Therefore, we believe that our work could
inspire future research in making LLM-powered data analysis more
streamlined, accessible, and productive through visualizations.

8.3 Limitations and Future Work
Hallucination. LLMs can generate incorrect or misleading in-
sights [21]. While our main focus is on insight management and

navigation, InsightLens can inherently support some degree of verifi-
cation by displaying relevant evidence like code snippets or outputs,
allowing users to identify potential errors. For example, during our user
study, participants frequently reviewed the Data section within the In-
sight Details to verify data attributes and analytical actions. This helped
them quickly determine if LLMs had correctly utilized and transformed
the data, without tediously sifting through lengthy responses. To fur-
ther improve InsightLens’s reliability, we can fine-tune LLMs for data
analysis tasks [81] and explore advanced agent designs [25]. Moreover,
incorporating methods like code verification [78] and task decomposi-
tion [32] can help users proactively diagnose issues in LLM responses.
We can also examine data transformation errors and factual contradic-
tions via self-reflection [30] and external knowledge bases [74], and
highlight them with visual cues like warning icons [8].

Bias. InsightLens relies on LLMs for fully automated insight extrac-
tion and topic generation. The lack of interactive control may foster an
excessive reliance on LLM outputs, potentially introducing biases [72].
Users might overlook critical insights requiring human interpretation or
feel constrained by LLM-generated topics. Moreover, biases inherent in
LLMs’ training corpus can be exacerbated by the patterns of the current
dataset, which may further propagate into the extracted insights or gen-
erated topics [17]. To mitigate these issues, we can integrate visual alert
mechanisms (e.g., highlighting uncertainties in LLM responses [48]) to
improve user awareness of potential biases. Additionally, incorporating
user feedback loops, such as enabling adjustments or merging of topic
nodes [65], can allow users to provide background knowledge or spec-
ify personal preferences. This can enhance the customization of insight
extraction and topic generation.

Scalability. To handle complex queries and large numbers of in-
sights/topics, InsightLens employs a streaming strategy [79] to enable
real-time parsing and rendering of LLM responses, thereby maintain-
ing system responsiveness. This allows for immediate presentation of
processed insights/topics and dynamic updating of visualizations to
significantly reduce user wait times. Nevertheless, we recognize that
it requires additional engineering efforts to support vast numbers of
attributes or topics in large-scale data analysis scenarios. Currently,
the system’s response time is primarily affected by the LLM inference
latency, which can be mitigated through hardware acceleration solu-
tions such as Groq [1]. To address potential visual clutter in the user
interface, hierarchical semantic zoom [64] for nodes within the Topic
Canvas and adaptive visual filtering [77] for columns in the Insight
Minimap can enhance user interaction and prevent interface overload.

Cognitive Impact. InsightLens utilizes color encoding to differ-
entiate analytic topics, which may introduce cognitive trade-offs like
color fatigue [63] or visual clutter, especially with extensive use or
among users with color vision deficiencies. Future work should ex-
plore alternative salience strategies to complement color encoding and
evaluate how different visual design choices might affect InsightLens’s
effectiveness. For instance, incorporating additional visual encodings
(e.g., size, shape) or multimodal cues [45] can diversify highlighting
methods and improve system accessibility.

Design and Evaluation. The participant groups in our formative and
user studies were rather small and lacked diversity in age, gender, and
domain, potentially introducing biases and limiting representativeness.
A larger, more diverse participant pool would enhance the robustness of
our design and evaluation. Additionally, conducting a between-subject
study and an ablation study on different user interface components
would mitigate individual effects and provide a thorough assessment.

9 CONCLUSION

This work presents InsightLens, an interactive system that visualizes the
complex conversational contexts during LLM-powered data analysis
to facilitate insight management and navigation. Built on an LLM-
agent-based framework that automates the recording and organization
of insights in analytic conversations, InsightLens provides a set of
progressively-evolving visualizations to enable multi-level and multi-
faceted insight navigation. A technical evaluation and a user study
demonstrate the effectiveness of our framework and system.
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