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Fig. 1: TrialCompass enables clinicians to explore the vast space of eligibility criteria for clinical trials (approximately five thousand
criterion candidates in this case). (A) Clinicians can adjust eligibility criteria based on their expertise or preferences in the Criterion View.
(B) They can analyze the relationship between eligibility criteria and outcome metrics by creating stages throughout the exploration
process, with history recorded for both. (C) Clinicians can explore the outcome metrics of all the criterion candidates in the Outcome
View. (D) Clinicians can examine the detailed characteristics of the original EHR data for either individual candidates within a group or
the summarization of a candidate group in the Detailed Characteristic Exploration View.

Abstract— Eligibility criteria play a critical role in clinical trials by determining the target patient population, which significantly
influences the outcomes of medical interventions. However, current approaches for designing eligibility criteria have limitations to
support interactive exploration of the large space of eligibility criteria. They also ignore incorporating detailed characteristics from
the original electronic health record (EHR) data for criteria refinement. To address these limitations, we proposed TrialCompass, a
visual analytics system integrating a novel workflow, which can empower clinicians to iteratively explore the vast space of eligibility
criteria through knowledge-driven and outcome-driven approaches. TrialCompass supports history-tracking to help clinicians trace
the evolution of their adjustments and decisions when exploring various forms of data (i.e., eligibility criteria, outcome metrics, and
detailed characteristics of original EHR data) through these two approaches. This feature can help clinicians comprehend the impact of
eligibility criteria on outcome metrics and patient characteristics, which facilitates systematic refinement of eligibility criteria. Using a
real-world dataset, we demonstrated the effectiveness of TrialCompass in providing insights into designing eligibility criteria for septic
shock and sepsis-associated acute kidney injury. We also discussed the research prospects of applying visual analytics to clinical trials.

Index Terms—Visual Analytics, Healthcare, Clinical Trials, Decision Making, Electronic Health Record (EHR)

• R. Sheng, X. Jin, Z. Sheng, and H. Qu are with the Hong Kong University of
Science and Technology. E-mail: {rshengac, xjinao, szh}@connect.ust.hk,
huamin@cse.ust.hk.

• Z. Xu, S. Rajendran, and F. Wang is with Cornell University. E-mail:
{zhx2005, sur4002, few2001}@med.cornell.edu.

• X. Wang is with Bosch. E-mail: wangxbzb@gmail.com.
• X. Wang and F. Wang are the co-corresponding authors.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on

1 INTRODUCTION

Clinical trials are studies on human subjects that assess the safety
and effectiveness of new medical interventions (e.g., vaccines or drug
usage), significantly advancing medicine. Completing a clinical trial is
costly, often requiring around $2.87 billion [5]. Unfortunately, 86% of
clinical trials fail in the initial step due to the inability to recruit suitable
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participants within the specified timeframe [25]. A major factor is
the lack of well-designed eligibility criteria, including inclusion and
exclusion criteria, to determine who is eligible to participate in the
study [38]. Designing effective eligibility criteria is a challenging task.
Stricter criteria may hinder enrollment, while more relaxed ones can
increase risks of adverse outcomes (e.g., worsening of the illness or even
death) for target interventions. Data-driven approaches [16, 29, 31, 38]
have been proposed to help clinicians design more inclusive, safe, and
effective criteria. For example, Trial Pathfinder [38] can simulate the
impact of adjusting a criterion (e.g., changing the age requirement from
under 60 to under 70) on potential trial outcomes. This information
offers valuable insights for designing eligibility criteria.

Despite the availability of these tools, clinicians still encounter dif-
ficulties in designing suitable eligibility criteria. First, existing tools
cannot help clinicians efficiently explore the large space of poten-
tial criterion combinations—that is, the extensive set of possibilities
generated by adjusting various eligibility criteria. In practice, clini-
cians must assess how different combinations of criteria—such as age
limits, medical history, and drug dosages—affect patient selection and
outcomes. Each individual criterion often needs to be tested across
multiple plausible settings based on clinical expertise. For example,
age may be set to under 60, 65, or 70 years, while medical history may
specify no surgery in the past one, three, or six months. This results
in a combinatorial explosion of criterion candidates that are hard to
explore. Second, existing tools fail to provide contextual information
on the temporal changes in patients’ conditions during the trial (e.g.,
whether liver risk consistently increases over time). They only help
clinicians trade off different aggregated metrics of trial outcomes, such
as the number of patients that can be recruited versus the final trial
hazard ratio. However, clinicians still need to consider finer details. For
instance, clinicians might weigh the final hazard ratio against changes
in liver risk during the trial. Even with a low hazard ratio, they may
still reject the eligibility criteria if they observe a persistent increase
in liver risk. Third, the lack of support to track the exploration his-
tory in eligibility criteria and outcome metrics throughout the iterative
exploration process poses a significant challenge. With numerous ex-
ploration operations, the iterative design process can quickly become
highly complex. Therefore, this tracking is crucial for iterative design
processes. Without clear records of how changes in criteria impact trial
outcomes, clinicians cannot systematically refine them and confidently
determine the final settings based on the explored candidates.

To address the above challenges, we developed a visual analytics
system named TrialCompass to assist clinicians in designing eligibility
criteria. To the best of our knowledge, we are the first to leverage
visualization techniques to address such a significant problem in the
healthcare domain. We first interviewed five experts to derive design
requirements and developed a novel visual analytics workflow that
enables clinicians to explore the expansive design space of eligibility
criteria iteratively. Given that experts may employ their expertise to
varying degrees during the exploration, this workflow provides two
approaches: knowledge-driven and outcome-driven. The knowledge-
driven approach enables experts to simulate outcomes by specifying
different eligibility criteria based on their expertise. On the other hand,
the outcome-driven approach supports experts in first examining a large
number of criterion candidates to make an informed decision. These
two approaches offer clinicians flexibility in iteratively refining the
eligibility criteria. We have also integrated a history-tracking feature,
allowing clinicians to trace their exploration process and understand
the relationships between eligibility criteria, outcome metrics, and
temporal details. In summary, we made the following contributions:
• We formulate the system design requirements for eligibility criteria

design of clinical trials through collaboration with five experts in
various specializations.

• We propose TrialCompass, a system integrating a novel workflow
for iteratively exploring the large space of eligibility criteria through
knowledge-driven and outcome-driven approaches.

• We utilize a real-world dataset to conduct expert interviews and case
studies, discovering novel insights for two important diseases (i.e.,
septic shock and sepsis-associated acute kidney injury).

2 RELATED WORK

2.1 Clinical trial design studies
Clinical trials are crucial for assessing the safety and efficacy of new
medical treatments. Designing suitable eligibility criteria is vital for
trial success, impacting participant recruitment and final results [11].
These criteria specify the conditions that participants should meet to be
eligible for a clinical trial, often including factors such as age, gender,
medical history, and current health status. However, designing criteria
is a challenging task for clinicians since subtle adjustments in criteria
may lead to big differences. For example, strict ones previously led to
80% of advanced non-small-cell lung cancer patients being excluded
from trials, significantly contributing to an 86% deficit in meeting re-
cruitment goals [17, 25]. Researchers have thus explored data-driven
approaches to support designing eligibility criteria more inclusively
and effectively [31, 38]. Specifically, these approaches utilize historical
patient data to measure the potential outcomes of specified criteria,
such as the number of eligible participants for recruitment and their
efficacy. For example, Trial Pathfinder [38] measures the number of
eligible patients and the hazard ratio of the setting criteria. Moreover,
it reveals a criterion’s impact on a trial’s outcomes. However, current
tools mainly rely on clinicians’ expertise to iteratively generate hy-
potheses, without fully leveraging precomputed outcome variations
under different eligibility criteria settings. In this trial-and-error pro-
cess, the lack of effective visual support often causes clinicians to lose
contextual understanding and makes it difficult to assess how individual
criteria or their combinations impact outcomes, hindering rigorous and
informed decision-making. Moreover, previous approaches fall short in
supporting the comparison and balancing of multiple objectives (e.g.,
hazard ratios and patient counts). When conflicts arise, clinicians must
manually make trade-offs, sometimes even consulting the original data,
which is time-consuming. Adding to the complexity, desirable out-
comes often vary depending on clinicians’ goals. Their thinking may
also evolve during the exploration process, making it difficult for auto-
mated algorithms to adapt effectively. These challenges highlight the
need for human-in-the-loop tools that combine computational power
with appropriate visualization techniques.

2.2 Visual analytics for clinical data
The deployment of visualizations in clinical research is becoming es-
sential [12,15,24,36,46,48,53]. For example, Wang et al. [48] summa-
rized visualization techniques for EHR data, which is one of the most
significant and common data formats in the clinical domain. These
visualization methods can help analyze the inherent complexity of clin-
ical data and support critical decision-making in this high-stakes field.
In this context, AI is increasingly integrated into clinical workflows,
and visualization often serves as a bridge between AI and clinicians
by addressing issues of uncertainty and interpretability [10, 26, 33].
For example, Cheng et al. [10] proposed using visualization to help
clinicians link original data with AI-generated features for improved
decision-making. In addition to AI, traditional statistical models re-
main widely used and are often more thoroughly validated in clinical
practice. However, visualization is still essential for helping clinicians
understand the large volumes of data these models produce [30, 32, 49].
For example, DPVis [32] employs Hidden Markov Models to calculate
disease progression pathways, using visualization to provide clinicians
with a more intuitive understanding of disease dynamics. Despite the
evident benefits of visualization tools in enhancing various clinical
workflows, their integration into clinical trial design remains limited.
Although a recent study [34] takes an initial step, it just visualizes
patients’ temporal progression during the treatment. It cannot be ap-
plied to complex decision-making scenarios like eligibility criteria
design. The application of visualizations has great potential to facilitate
exploring the huge design space of eligibility criteria.

2.3 Visual analytics for multi-objective decision making
Our work aims to assist clinicians in refining eligibility criteria consid-
ering multiple objectives, which is a multi-objective decision-making
problem. In the visualization community, considerable visual analytic



technologies have been explored to address multi-objective decision-
making problems [8, 9, 21, 37, 40, 47, 50, 51, 54]. A key aspect of
these tools is the ability to help users narrow down their choices from
an immense selection of options. One of the strategies is to enable
users to define their constraints and preferences. This approach allows
users to see the effects of their constraints and filter the options accord-
ingly [9,51]. However, it is challenging for experts to define constraints
when designing eligibility criteria in a clinical trial context. Another
strategy focuses on the discovery of user preferences through a process
of heuristic exploration [21, 40, 50, 54]. This technique is particularly
useful when users are unable to explicitly articulate their constraints or
preferences. However, those works cannot support experts in system-
atically exploring the impact of various eligibility criteria on different
outcome forms (i.e., multiple outcome metrics and original EHR data
insights) and make informed decisions. Therefore, it is urgent to de-
velop a new visual analytics workflow that helps clinicians navigate
through the large space of eligibility criteria.

3 DESIGN STUDY

We developed a system to help clinicians design eligibility criteria. Over
the past six months, we have collaborated closely with five domain
experts (Ea-Ee) with various clinical specialties. Ea is a urologist
with over twenty years of clinical trial experience. Eb and Ec are
nephrologists with approximately three years of experience. Ed is
a professor who has dedicated five years to data-driven clinical trial
design. Lastly, Ee, a doctoral student who specializes in ophthalmology
with two years of expertise. We conducted one-hour semi-structured
interviews with each expert to understand the eligibility criteria design
challenges. From their requirements, we derived visual analysis tasks,
then validated these through bi-weekly prototype feedback sessions.
This study received IRB approval.

3.1 Factors Related to Eligibility Criteria Design
Data-driven design leverages historical patient EHR data to help define
and refine eligibility criteria. For example, when testing a new drug,
clinicians can explore past patient records to identify individuals who
have taken similar compounds, using them as a reference for eligibility
adjustments. Specifically, clinicians often first determine eligibility
criteria to filter qualified patients based on their original EHR data
and assign medical interventions to categorize them into treatment and
control groups. Then, several outcome metrics, such as the hazard ratio
and kidney risk ratio, can be calculated based on the original EHR data
from the patients in the treatment and control groups. The temporal
details extracted from EHR data aid in interpreting these outcome
metrics and understanding the more nuanced results of the intervention.
These factors are crucial to the design of eligibility criteria, ensuring
that its results are reliable, valid, and applicable to the intended patient
population. We have introduced those factors in detail as follows.

1) Eligibility criteria are the conditions designed by clinicians to
recruit participants for clinical trials, categorized into inclusion and
exclusion criteria [38]. Inclusion criteria define participant eligibility
for a clinical trial, whereas exclusion criteria identify disqualifying
traits. Eligibility criteria may restrict participant demographics (e.g.,
age being between 18 and 70), health status (e.g., specific disease
diagnoses, or recent medication history), and other relevant variables.
We define each unique combination of criteria with specific settings as
a criterion candidate (e.g., age under 70, no heart surgery in the past
three months, BMI under 30).

2) Treatment and control groups are differentiated by whether the
enrolled participants receive the medical intervention being studied.
The treatment group is given the medical intervention, while the control
group receives a standard intervention (e.g., placebo) or no interven-
tion [1]. Then clinicians will compare these two groups to assess the
effectiveness and safety of the medical intervention.

3) Outcome metrics assess the potential results in a clinical trial
from systematic analysis of the treatment and control groups [18].
Once clinicians establish their eligibility criteria, they can filter out
qualified patients from historical patient datasets. Then they identify
a medical intervention that is either identical to or a suitable proxy

for the current medical intervention being studied. This intervention
allows them to categorize the filtered patients into treatment and control
groups. Next, they measure various outcome metrics based on the two
groups. Through the literature survey, two outcome metrics (i.e., the
number of patients and hazard ratio) are always seen as the primary
focus of interest in clinical trial studies and calculated in data-driven
approaches [31, 38]. We have introduced them in detail as follows.

• The number of patients refers to the total size of participants
qualified for the clinical trial. Recruiting sufficient participants is
critical to determine whether a clinical trial can proceed [13]. All
five experts underscored the importance of the number of patients.

• Hazard ratio refers to the ratio of hazard rates between the
treatment and control groups, where a value less than one indicates
a positive effect for the treatment group [44]. This metric is often
a direct indicator of the effectiveness of a medical intervention
[4, 31, 38, 39]. Additionally, it is typically reported with a p-value
to assess statistical significance. Its clinical acceptability varies
by context—for instance, in the treatment of rare diseases, even a
hazard ratio slightly below 1 may be considered meaningful.

We then conducted expert interviews to identify additional metrics of
interest. First, several experts suggested examining the overall diversity
of the recruited participants. Moreover, since most clinical trials focus
on drug-based experiments, the experts were particularly concerned
about the impact of drug usage on patients’ organ function. They
suggested evaluating kidney and liver function since the kidney is the
primary organ responsible for the excretion of most drugs [3] and the
liver also plays a crucial role in drug metabolism [35]. Specifically,
they would like to understand the kidney and liver risks of patients over
time. Additionally, the Charlson Comorbidity Index was mentioned to
indicate patient mortality risk. However, due to a lack of relevant data
on most patients, we decided not to incorporate this index. Below, we
outline the additional outcome metrics used in our study.

• The diversity of patients refers to the demographic breadth rep-
resented by participants who fulfill the eligibility criteria, en-
compassing a variety of attributes such as age, gender, race, and
others. Recruiting a patient population with diverse demographic
characteristics can lead to more broadly applicable results [28].
A greater value of diversity indicates a larger variety within the
studied patient population.

• Kidney risk ratio and liver risk ratio measure the incidence
of adverse events related to the kidney and liver between the
treatment and control groups, respectively. A value less than one
suggests that the treatment group has a lower risk of experienc-
ing adverse events. Ea, Eb, and Ec highlighted the necessity of
evaluating the potential adverse reactions in survivors in the two
groups. Ea mentioned that the hazard ratio usually reflects the
survival rate difference between the treatment and control groups,
which is a primary concern of a clinical trial. However, it is also
important to comprehend the health condition of those surviving
patients. The kidney and liver are the two most critical concerns.

Clinicians must balance the five outcome metrics when defining eligi-
bility criteria for clinical trials, as these metrics can at times present
conflicting priorities. For instance, relaxing the eligibility criteria may
increase participant enrollment, yet also result in a higher hazard ratio.
As such, clinicians need to carefully weigh the tradeoffs among the five
outcome metrics during the eligibility criteria design process.

4) Temporal details are derived from the original EHR data. The
five outcome metrics are aggregation values calculated through pa-
tient cohorts. Therefore, clinicians also need to examine the temporal
detailed characteristics in those patients’ conditions to gain a more
comprehensive understanding to compare different criterion candidates.
For example, Ec highlighted the importance of tracking changes in
kidney and liver function over time, as the medical intervention may
have varying onsets across participants.

3.2 Visual Analysis Tasks
Based on our interviews with five experts, we have abstracted this do-
main problem into a multi-objective decision-making problem. Then,
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qualified patients and categorizes them into treatment and control groups based on eligibility criteria, medical interventions, and their original EHR
data. (F) Measure the outcome metrics. (G) Organize the temporal detailed characteristics of the original EHR data.

two authors performed independent inductive coding of interview tran-
scripts using the thematic analysis methodology [7]. Through iterative
coding and regular discussions, we reconciled interpretations and col-
lectively distilled five key analytical tasks through consensus.

T1 Support eligibility criterion specification for candidate gen-
eration. We need to enable experts to make initial settings for
eligibility criteria. Moreover, experts should be able to specify
which criteria are adjustable based on their requirements and the
range of possible adjustments for each criterion. Following their
settings, we can generate a series of criterion candidates.

T2 Present the outcomes of criterion candidates. Some experts (Ea,
Eb, and Ee) emphasized the need to efficiently evaluate criteria
configurations. As Eb noted, “Manually testing different criteria
combinations is prohibitively time-consuming.” Ea added, “Seeing
potential outcomes of various criteria candidates in advance can
help me form testable hypotheses.” Therefore, our system needs to
precompute and visually present all five outcome metrics for each
candidate, enabling rapid comparative assessment.

T3 Support knowledge-driven and outcome-driven exploration.
All five experts emphasized the need to integrate their expertise
when evaluating criterion candidates. For instance, Ea explained,

“For several criteria, I have prior expectations from literature or
other clinical trials. The system should let me quickly validate these
hypotheses.” Experts also highlighted the benefits of using com-
puted outcome metrics to address knowledge gaps. Ee mentioned
that insufficient experience could be mitigated by leveraging big
data to enhance exploration efficiency, a sentiment echoed by Eb.
Consequently, our system should offer two exploration approaches:
one that taps into clinicians’ prior knowledge (knowledge-driven)
and another that relies on measured outcomes (outcome-driven).

T4 Incorporate outcome metrics and temporal details for compar-
ison. Ea, Eb, and Ec highlighted the need to examine details of
the original EHR data. For instance, Ea mentioned, “We also need
to track organ function trajectories—not just snapshot values. If
kidney function declines steadily post-treatment, this signals intol-
erable toxicity even if the aggregate risk ratio appears acceptable.”
Therefore, it is crucial to facilitate the comparison of outcome
metrics with temporal details.

T5 Facilitate the iterative navigation of criterion candidates. After
exploring outcome metrics and temporal details of original EHR
data, experts need to gain insights that could lead to further refine-
ment of eligibility criteria. Given the extensive exploration history
generated, experts Ea, Ec, and Ed emphasized the importance of
systematically tracking and organizing this information.

4 DATA ANALYSIS

4.1 Data Description

In this work, we utilized the MIMIC-IV dataset [27] as a historical
record of patient data to study eligibility criteria design. The MIMIC-
IV dataset is a publicly available database that provides comprehensive
clinical data from intensive care units (ICUs). It also includes de-
identified electronic health records (EHR) of patients. Specifically, it
contains detailed information on over a hundred thousand patients, such

as specific diagnoses, observed values of physiological indicators, and
medication history. This information allows us to ensure a sufficient
sample size when studying different clinical trials.

4.2 Data Processing
We first use the eligibility criteria and specific medical intervention
entered by experts to separate patients into treatment and control groups
(Fig.2-A-E). In this process, adjustments to the criteria will generate
multiple criterion candidates and result in different patient compositions
of the two groups. Then, our system can calculate the outcome metrics
for each criterion candidate (Fig.2-F). Finally, the temporal details of
the treatment and control groups derived from the original EHR data
will be systematically compiled and organized (Fig.2-G).

4.2.1 Patient Cohort Construction
First, we can identify eligible patients based on structured eligibil-
ity criteria entered by clinicians and classify them into treatment and
control groups (Fig.2-E). When comparing the treatment and control
groups, it is crucial to address the inherent differences in confound-
ing factors, which are unrelated to the factors being studied. These
confounding factors can introduce bias and affect the interpretation of
the results. Therefore, we performed a matching process for the two
groups under each criterion candidate. To achieve this, we leveraged
the propensity score matching algorithm, like Trail Pathfinder [38],
to reduce bias caused by confounding factors (e.g., race, gender, and
birthplace). The propensity score is defined as the conditional prob-
ability of receiving the medical intervention given a set of observed
confounding factors [43]. Specifically, this metric is used to identify
matching patients within the control group to correspond with those in
the treatment group, ensuring that their characteristics are comparable
and allowing for a more accurate estimation of the treatment effect,
which can be measured as follows:

e(F) = P(T = 1 | F),

where e(F) represents the propensity score, T denotes the medical
intervention assignment (1 for treatment, 0 for control), and F repre-
sents the confounding factors. Then, we iterated through each patient
in the treatment group and identified the most similar patients in the
control group based on their propensity scores (Fig.2-E). We then com-
pared the propensity score difference between the matched pairs with
a specified caliper value. The caliper value, often set as the median
absolute deviation of the propensity scores [2], serves as a threshold
for acceptable similarity. If the difference in propensity scores is not
greater than the caliper value, the pair is considered a match. Or we
discard this particular sample. Finally, these pairs will be used for
subsequent comparison between the treatment and control groups.

4.2.2 Outcome Metric Calculation
We calculated five outcome metrics to assess the potential results of
each criterion candidate (Fig.2-F). The number of patients is the count
of qualified patients. The diversity of patients is calculated based
on gender and age, which are commonly mentioned in data-driven
eligibility criteria design [38]. We calculated the Shannon entropy
based on the two attributes to represent the diversity of patients. We
did not choose other diversity metrics, such as the Gini coefficient and



Simpson index. This is because these metrics have lower values when
indicating higher diversity, which contradicts experts’ intuition.

Then, we calculated the hazard ratio based on the treatment and con-
trol groups through training the Cox proportional-hazards model [45],
which is a commonly used method for survival analysis. Specifically,
the model is formulated as follows:

h(t|X) = h0(t) · e(β1X1+β2X2+...+βpXp+βT T ),

where h(t|X) represents the hazard function at time t given the covari-
ates X , h0(t) represents the baseline hazard function, and β1,β2, . . . ,βp
correspond to the regression coefficients associated with each covariate.
Moreover, T indicates the medical intervention assignment. Finally,
the hazard ratio can be represented by HR = e(βT ).

For the kidney risk ratio and liver risk ratio, we used serum creati-
nine (SCr) [6] and aspartate aminotransferase (AST) [42] as indicators,
respectively. We extracted them from the original EHR dataset. Due
to potential truncation, some patients may have missing or incomplete
data. We addressed this by imputing values based on discharge status:
for discharged patients, we replaced missing data with normal values,
assuming recovery. For patients with missing data before discharge or
death, we discarded samples with significant gaps and applied interpo-
lation for the rest [14]. We then calculated daily kidney and liver risk
ratios, averaging them to provide overall assessments for each.

4.2.3 Temporal Detail Organization
Our experts (Ea-Ee) pointed out that it is challenging to understand
the demographic characteristics of the recruited patients only through
the diversity score. Therefore, we compiled the distribution of gender
and age for both the treatment and control groups. In addition, the
hazard ratio needs to be accompanied by a confidence interval to allow
clinicians to understand the significance of the results. Furthermore,
considering that the kidney and liver risk ratios represent an average of
the risk over a period, clinicians need to examine how these risks evolve
over time in the two groups. Therefore, we summarized the risk degree
for the organs over time (Fig.2-G). For patients who were alive at a
specific time, we calculated the average degree of abnormality in their
indicators—such as SCr for kidney risk and AST for liver risk—for
both the treatment and control groups, based on reference ranges.

5 VISUAL DESIGN

TrialCompass provides three views to support clinicians in design-
ing eligibility criteria: the Criterion Specification View (Fig. 3), the
Criterion-outcome Exploration View (Fig.1-A, B, C), and the Detailed
Characteristic Exploration View (Fig.1-D).

5.1 Criterion Specification View
This view facilitates clinicians in entering eligibility criteria for enroll-
ment and defining the particular medical intervention that differentiates
between treatment and control groups (T1). Clinicians can choose to
create criteria for medical interventions, inclusion criteria, and exclu-
sion criteria (Fig.3-A, B). The system supports the use of “AND” and
“OR” within a single criterion, as well as several aggregation functions
like the minimum and maximum (Fig.3-C). It also supports the com-
bination of multiple criteria, such as “at least two eligibility criteria
must be met” (Fig. 3-D). In addition, our system provides clinicians
with user-friendly prompts, like displaying detailed explanations when
hovering over an entity in a drop-down list. Finally, our system allows
clinicians to customize uncertain criteria that they would like to adjust.
They can click the corresponding button to set multiple adjustment
values (Fig.3- C1). By combining these adjustments for each criterion,
our system can generate criterion candidates, evaluate their outcome
metrics, and organize the temporal details of the original EHR data.

5.2 Criterion-outcome Exploration View
This view allows clinicians to systematically navigate through a com-
prehensive array of criterion candidates along with their associated
outcome metrics. There are three sub-views: the Criterion View, the
Outcome View, and the Exploration View.

Fig. 3: (A-D) The Criterion Specification View enables clinicians to specify
inclusion criteria, exclusion criteria, and medical interventions.

5.2.1 Criterion View
This view (Fig.1-A) enables experts to adjust each eligibility criterion
through sliders based on their prior knowledge or insights during the
exploration process (T3).

Description: This view is organized sequentially, listing each eligi-
bility criterion that experts need to adjust. A slider is provided for each
criterion to allow clinicians to make adjustments. If clinicians initially
specify a maximum and minimum constraint for a criterion, two sliders
will appear to represent these limits. Additionally, to aid experts in
understanding the range, the region of the effective range is highlighted.
Beneath each tick mark on the slider, color-coded visualizations indi-
cate how many criterion candidates satisfy the corresponding constraint
(Fig. 1-A2). They can interact with the scatter plot in the Outcome
View to show the distribution of the selected candidates. Considering
that clinicians often need to compare two candidates, two colors are
used above and below the slider to display the distinctions between the
criteria of two candidates selected in the other views (Fig.1-A1).

Justification: Originally, we utilized a set of polylines along parallel
sliders to display the combinations of various eligibility criteria (Fig.4-
A). However, this approach introduced visual confusion. Interleaved
polylines made it difficult for experts to discern differences between
two candidates. Furthermore, in this situation, the upper and lower
limit requirements of a criterion will be separately displayed, which
does not align with the customary practices of experts.

5.2.2 Outcome View
This view (Fig.1-C) reveals the values of outcome metrics associated
with all potential criterion candidates using a scatter plot (T2). Experts
can select any two of the five metrics to represent on the axes. We
avoided using glyphs to prevent visual clutter and potential interpre-
tation difficulties. Instead, experts can set two axes to represent each
criterion candidate as a point in the scatter plot, allowing for zooming
during exploration. They can also lasso interesting candidates, which
will be shown in the Exploration View for further analysis (T3).

5.2.3 Exploration View
This view (Fig. 1-B) enables clinicians to conduct systematic explo-
ration. It allows experts to navigate through the vast space of eligibility
criteria based on stages. In each stage, the exploration process is
recorded through a snapshot, assisting clinicians in tracking and analyz-
ing their exploration path (T5). This feature helps them to understand
and narrow down the complex criterion space effectively.

Description: This view helps experts understand the relationship
between criteria and outcomes through their exploration history. Given
the complexity of adjusting criteria in the Criteria View and selecting
candidates in the Outcome View, systematically recording this oper-
ation history is essential for clarity. To achieve this, we introduced
stages (Fig.1-B1). Experts can create a new stage whenever they con-
sider an exploration action to be independent of previous ones. Their
exploration will be recorded through a snapshot, where they can assign
an importance level, keywords, and detailed descriptions to this stage.



This enables precise documentation and easy review of previous oper-
ations. Furthermore, we provide a condensed stage visualization that
displays all important stages at the top of the Exploration View.

In each stage snapshot, our system visualizes the exploration history
from two main operations: adjusting eligibility criteria in the Criterion
View and selecting criterion candidates based on outcome metrics in
the Outcome View. First, a matrix displays changes in eligibility crite-
ria (Fig.1-B2). Typically, each row in a matrix represents a criterion.
When a criterion has a minimum and maximum threshold set, two rows
will represent them respectively. Columns correspond to exploratory
records, and circles indicate values—larger circles represent higher
values, with exact figures displayed on hover. Second, we present
changes from selecting criterion candidates in the Outcome View us-
ing two methods. Thumbnails of the scatter plot provide an intuitive
overview of operations (Fig.1-B5). Considering that the scatter plot in
the Outcome View might involve changing the horizontal and vertical
axes, we display these axes in the thumbnail if they have been changed.
Additionally, line charts illustrate the average values of five outcome
metrics during exploration (Fig. 1-B4), helping experts comprehend
how different outcome metrics fluctuate throughout their operations.

Fig. 4: (A) The alternative design is to compare the eligibility criteria of
two individual criterion candidates. (B) The alternative design is to track
the changes in multiple eligibility criteria.

Justification: First, we initially leveraged line charts to display the
change in eligibility criteria. However, as the number of eligibility
criteria increases, each line chart occupies a smaller portion of the
space. This diminishes the visual amplitude of variations, making it
challenging to discern changes. Then, we used radar charts to represent
changes in criteria (Fig. 4-B). However, we discovered that experts
encountered difficulty in comparing radar charts to understand the
changes in a specific criterion over time. Second, we just recorded how
eligibility criteria changed and the five outcome metrics evolved over
time with each operation conducted by clinicians at first. However,
when faced with a large amount of historical data, experts often struggle
to keep track of their previous operations and relevant records during
the current exploration. Therefore, we introduced the concept of stages.

5.3 Detailed Characteristic Exploration View

This view (Fig.1-D) presents temporal detailed characteristics of the
original EHR data in two modes: group and individual (T4). For the
group mode, the visualization presents the average and standard devia-
tion of temporal detailed characteristics for all the criterion candidates
in a group (Fig. 1-D1). The individual mode displays each criterion
candidate in a group individually (Fig.1-D2). Specifically, it first dis-
plays the index and five outcome metrics. Additionally, histograms
indicate the number of patients and hazard ratios. Different colored
line charts represent the treatment and control groups for the distri-
butions of gender, age, kidney function over time, and liver risk over
time. Line charts are used instead of histograms to reduce clutter and
enhance trend analysis. Experts can select two groups in group mode
or two candidates in individual mode for comparison (Fig.1-D4). The
criteria for the two selected groups are showcased in the Exploration
View (Fig.1-B3), while the criteria for two individual candidates are
displayed in the Criterion View (Fig.1-A1).

6 CASE STUDY

We have conducted case studies based on the MIMIC-IV dataset [27]
for two different diseases (i.e., septic shock and sepsis-associated acute
kidney injury). For the first case, we invited a new clinician E f , who
has over five years of experience in clinical trials in sepsis. For the
second case, we invited our previous expert Eb, who specializes in
kidney disease research and has three years of experience in clinical
trials. We thoroughly documented the exploration process of both
experts to showcase how our system assists in eligibility criteria design.

6.1 Case I: Septic Shock
E f is an expert in sepsis research and is very interested in a historical
clinical trial1 investigating the efficacy of hydrocortisone (a kind of
drug) in patients with septic shock. She desired to assess whether the
eligibility criteria in this clinical trial could be refined. In addition, she
would like to check whether and how to add two more criteria that are
commonly seen in other related clinical trials.

Specifying the eligibility criteria (T1). First, E f established the
eligibility criteria and medical intervention based on this clinical trial.
Among these, she focused on adjusting two specific criteria. She
thought one was slightly relaxed, while another was too restrictive
to potentially exclude some patients who could benefit. The first is
age (the first row in Fig. 5-A), as this clinical trial requires patients
above 18 years old. However, she desired to understand how age might
impact the efficacy of hydrocortisone. For instance, she was considering
whether hydrocortisone might be less effective in older patients. This
consideration could lead her to establish an upper age limit for the trial.
Secondly, she noticed that it specified the requirement for patients to be
on mechanical ventilation (the second row in Fig.5-A), which usually
indicates a severe condition. She wondered if hydrocortisone was also
suitable for patients with less severe conditions.

Additionally, E f introduced two new criteria for adjustment. These
criteria were not considered in the original trial but are frequently
included in other related clinical trials. E f deemed them important
based on her expertise. The first was that patients should not have
undergone cardiac surgery (the third row in Fig.5-A) within the past
six months. From her expertise, patients who had previously undergone
cardiac surgery and subsequently developed sepsis were at a higher risk
of developing septic cardiomyopathy, which carried a higher mortality
rate. Therefore, she hypothesized that hydrocortisone might not be as
effective for these patients. Finally, she desired to assess whether to
recruit patients with obesity, as obesity (the fourth row in Fig.5-A) can
exacerbate organ damage caused by septic shock. She set the range of
those criteria within the Criterion Specification View. Initially, she set
the criteria to match the original clinical trial, finding a hazard ratio of
1.225 with a statistically significant confidence interval. The kidney
and risk ratios were around 2, indicating high stakes. Despite the large
sample size, these metrics led her to refine the eligibility criteria.

Knowledge-driven exploration (T3). Initially, E f desired to ex-
amine whether patients who did not require mechanical ventilation
could still benefit from hydrocortisone. Therefore, she explored the
impact of the mechanical ventilation requirement by creating a stage in
the Exploration View and specifying the slider in the Criterion View.
She found that the group without receiving mechanical ventilation (the
first column in Fig.5-B1) showed a deterioration in various outcome
metrics. This was indicated by a higher hazard ratio, as well as higher
kidney and liver risk ratios (the second, fourth, and fifth line charts in
Fig.5-B1). Upon hovering over the hazard ratio line chart, she noticed
that this group particularly had a hazard ratio greater than 1 (1.11).
Conversely, the group that received mechanical ventilation (the second
column in Fig. 5-B1) had a hazard ratio below 1 (0.97). “A hazard
ratio below 1 indicates a positive effect of the treatment. Therefore, it
suggests that hydrocortisone may not have a positive effect on patients
without mechanical ventilation.” Then, E f would like to examine the
potential outcomes from interactions between the mechanical ventila-
tion criterion and other criteria, as she was concerned this might lead
to changes in the effects. Therefore, E f decided to analyze all the

1https://clinicaltrials.gov/study/NCT01448109



Fig. 5: (A) Specify four eligibility criteria. (B) The exploration process. (B1-B2) Investigate the impact of mechanical ventilation. (B3) Study the impact
of cardiac surgery. (B4) Identify the factors (i.e., age and obesity) that can impact the hazard ratio through the outcome-driven approach. (B5)
Validate the impact of age. (B6) Validate the impact of obesity. (C) Explore two groups of candidates with hazard ratios greater than or less than 1.

criterion candidates requiring mechanical ventilation alongside those
not requiring mechanical ventilation. She found that the average hazard
ratio of the former was less than 1 (the second column in Fig.5-B2, the
second line chart). This reinforced her belief in following the historical
clinical trial and targeting patients undergoing mechanical ventilation.

“Mechanically ventilated patients often have more severe systemic in-
flammation. In this context, hydrocortisone seems to be effective at
modulating the inflammation and improving their symptoms.”

E f proceeded to evaluate the requirement of duration after cardiac
surgery. She hoped to determine whether the implementation of this
criterion could mitigate the hazard ratio and other risk ratios. Therefore,
she created a new stage to analyze the criterion candidates with varying
time requirements after cardiac surgery. Her comparisons of all five
outcomes across different time requirements (indicated in the line charts
in Fig.5-B3) revealed that candidates without a time requirement (the
first column in Fig.5-B3) had a higher average hazard ratio (greater
than 1), kidney risk ratio, and liver risk ratio. This aligned with her
prior knowledge that patients with a history of cardiac surgery who
later developed sepsis faced an elevated risk of septic cardiomyopathy,
which in turn carried a higher mortality rate. Furthermore, she noticed
that there was almost no difference in the outcome metrics between
the time requirements of 3, 6, or 12 months (the last three columns in
Fig.5-B3, the line charts). Therefore, E f decided to set the inclusion
criterion requiring a duration after cardiac surgery greater than 6 months.
This decision was predicated on the medical understanding that a 3-
month threshold typically denotes potential safety, whereas a 6-month
threshold signifies a more fundamental level of safety. By implementing
the 6-month benchmark, E f could ensure a baseline level of safety while
still avoiding the exclusion of patients who could potentially benefit.

Fig. 6: The temporal details of the two groups. (A) The group with
minimum age limits set at 18. (B) The group with minimum age limits set
at 65. E f found that older patients exhibit lower kidney and liver risks, but
caution is advised regarding the mid-term increase in liver risk.

Outcome-driven exploration (T3). After finalizing the two criteria,
E f used the Outcome View to examine the factors influencing the
hazard ratio. To understand how age and obesity jointly influence the
outcome, she performed a lasso selection on the scatter plot based on
y-axis values (T2) to compare two distinct groups: groupA (hazard ratio
> 1) and groupB (hazard ratio < 1) (Fig.5-C1). She discovered that the
criterion candidates in groupB had a higher minimum age requirement
and a greater number of patients with obesity (as indicated by the circle
size in the first row and the last row of the matrix in Fig.5-B4). She
also checked it through the heatmap under each slider in the Criterion

View. “This indicates that recruiting patients with older age may lead
to better treatment outcomes. Furthermore, patients with obesity can
also benefit from the treatment.”

Employing a similar approach as before, E f discovered that patients
over the age of 65 (the second column in Fig.5-B5, the line charts) had
better treatment efficacy, indicated by lower hazard ratios (T5). She
also observed that increasing age had a minimal impact on kidney and
liver risk ratios (Fig.5-B5, the fourth and fifth line charts). “Although
there was minimal change in the kidney or liver risk ratios, it is still im-
portant to identify when these patients might experience abnormalities.”
Therefore, E f delved into the Detailed Characteristic Exploration View
(T4). She discovered that older patients in the treatment group were
more likely to experience mid-term liver issues (as indicated by the
steep increase in the blue line during the mid-term period in Fig.6-B).

“This may be due to liver-related side effects that arise after administer-
ing a certain amount of hydrocortisone. I find it acceptable since these
patients are expected to recover in the later stages.” Finally, E f made
an intriguing observation during her analysis of obesity: patients with
obesity (the second column in Fig.5-B6) indeed displayed a favorable
response to the treatment since their hazard ratio was lower. This led
her to consider the presence of the obesity paradox. “Despite the poten-
tial adverse effects of obesity on organ function, several studies have
indicated that individuals with obesity exhibit lower mortality rates.
This phenomenon has been observed in some diagnosis scenarios. It
seemed to be also present in this case.” However, she also emphasized
the importance of monitoring the proportion of abnormalities in liver
and kidney function, as indicated by the last two line charts in Fig.5-B6.
Despite this, she ultimately decided to include patients with obesity, as
the hazard ratio was remarkably low.

The final decision. Finally, E f reviewed all of her explorations again.
Using the stage-based visualization, she systematically rechecked the
reason behind each decision and then summarized the insights. She
determined the following key criteria based on her findings: recruiting
patients undergoing mechanical ventilation, setting a minimum time
frame of 6 months after cardiac surgery, including patients with obe-
sity, and enrolling as many elderly patients as possible. “This system
has helped me improve potential outcomes compared to the historical
eligibility criteria. My key concern—the hazard ratio—has shifted from
greater than 1 to less than 1, which is very promising.” She also noted
that the kidney and liver risk ratios are below 1, boosting her confidence
in her decision-making “Although patient recruitment has decreased,
this likely filters out those who do not respond well to treatment.”

6.2 Case II: Sepsis-associated Acute Kidney Injury

Eb, an experienced nephrologist, was interested in studying the ef-
fects of aspirin on sepsis-associated acute kidney injury. He hoped to
leverage our system to optimize five eligibility criteria.

Specifying the eligibility criteria (T1). He set the inclusion criteria
as patients with sepsis-associated acute kidney injury. He then used
aspirin to divide the treatment and control groups. Next, he selected five
criteria which were always considered in kidney-related diseases and



he was interested in (Fig.1-A). The first was the AKI stage, categorized
into three levels, indicating the severity of kidney dysfunction. The
second was age. In some clinical trials, older patients are often excluded
due to potential organ decline and reduced treatment compliance. The
third was the SOFA score, reflecting the degree of organ failure and
providing insights into the patient’s current health condition. The fourth
was BMI, which is used to evaluate whether an individual is within the
healthy weight range. Excessively overweight patients are sometimes
excluded from clinical trials for safety reasons. The fifth was the GCS
score, which is widely used in emergency medicine to assess a patient’s
level of consciousness. Then, Eb inputted these criteria and manually
corrected them. Initially, the AKI stage was required to be over 1,
and the age was limited to below 60. The SOFA score had to be less
than 15, and no specific requirements were set for the GCS score.
Additionally, patients whose BMI was larger than 35 were excluded
from the study. These criteria identified approximately 1,000 eligible
patients. The analysis yielded a statistically significant hazard ratio
of 0.59. Additionally, the kidney risk ratio was below 1, while the
liver risk ratio exceeded 1. Eb considered the hazard ratio favorable
but deemed the patient sample size insufficient. He hoped to greatly
increase the patient enrollment, while still maintaining the low hazard
ratio and other favorable outcome metrics.

Outcome-driven exploration (T3). Given the numerous criteria and
their interactions, Eb found it difficult to adjust the criteria and examine
the outcomes. However, with so many potential candidates, selecting
the ones for further examination was also challenging. Therefore, he
decided to explore the relationship between the criteria and outcome
metrics first to see how to reduce the exploration space. Therefore,
Eb initially identified four regions (Fig. 1-C2) on the edges of the
scatter plot where the hazard ratio and the number of patients were
balanced (T2). “These regions represent a trade-off, where increasing
the number of patients can lead to a higher hazard ratio.” From
the records in the Exploration View, he observed that the size of the
circles remained relatively unchanged in the second, fourth, fifth, and
seventh rows of the matrix in Fig.1-B2, respectively. This indicated
that the upper limit for the AKI stage, the lower and upper limit for
the SOFA score, and the lower limit for the GCS score were stable
in these four regions. Consequently, he established these criteria (i.e.,
the AKI stage ≤ 3, 0 ≤ the SOFA score ≤ 24, and the GCS score ≥ 3)
since he believed that within this range, he was more likely to find the
criterion candidate he was satisfied with. Eb mentioned, “Patients with
higher AKI stages indicate more severe kidney injury, while lower GCS
scores suggest more significant brain impairment. This suggests that
severely affected patients may benefit from aspirin. Furthermore, the
overall impact of the SOFA score seems minimal.”

Next, Eb selected two smaller groups (i.e., groupC and groupD) for
in-depth analysis (Fig.1-C1). Therefore, he examined their details in
the Detailed Characteristic Exploration View (Fig.1-D) (T4). While
groupC exhibited a slightly lower hazard ratio (0.70) compared to
groupD (0.72), he noticed that the number of patients decreased by
almost half (Fig.1-D1). Additionally, he noted that the treatment group
in groupC exhibited a continuous deterioration of liver function by
the end of the experiment (Fig.1-D3). Therefore, he was inclined to
choose groupD for further exploration. Then, Eb examined the two
individual criterion candidates in groupD. Based on the comparison
in the Criterion View, he found that both selected candidates had an
upper age limit of 90 and an upper GCS score limit of 15 (Fig.1-A). To
validate this, Eb adjusted the corresponding slider and discovered that
there were not sufficient patients aged under 60 (as indicated by the
first line chart in Fig.1-B4) (T5). He further confirmed that setting the
upper age limit to 90 was a preferable choice. Using the same approach,
Eb determined the upper limit of the GCS score.

Knowledge-driven exploration (T3). Eb started to determine the
remaining two eligibility criteria: the lower limit of the AKI stage and
whether to enroll patients with high BMI. Eb believed that patients
with an AKI stage of 1 (indicating a less severe condition) might
be more prone to experiencing side effects rather than benefits. As
expected, based on the second line chart in Fig. 1-B6, he found that
as the lower limit of the AKI stage increased, the hazard ratio slightly

decreased. However, he said, “Although including patients with an
AKI stage of 1 increases the hazard ratio, it remains at an acceptable
level. Considering the obvious increase in the number of patients and
the overall lower kidney risk in this group, it seems reasonable to set
the lower limit of the AKI stage as 1.” He applied the same approach
to another criterion and concluded that the study should also include
patients with a higher BMI.

The final decision. Eb discovered that the clinical trial would in-
clude over 5,000 patients after the exploration. Compared to the initial
1,000 patients, this represented a 5-fold increase in the number of pa-
tients. In addition, Eb found that the other outcome metrics remained
acceptable. There was a slight increase in the hazard ratio from the
initial value of 0.59 to 0.72. Although the two values are distant from 1,
they are not excessively low, indicating a similar level and suggesting
that the drug is effective in the selected population. Furthermore, he
found that the kidney risk ratio remained below 1, and there was a
notable decrease in the liver risk ratio compared to the initial settings.
Overall, Eb expressed excitement about these insights, as they indicate
a substantial number of patients without a significant increase in risk.

7 EXPERT INTERVIEW

To further evaluate the effectiveness of our system, we conducted one-
on-one interviews via Zoom with five clinicians (Pa-Pe) who had not
participated in the design process of TrialCompass and had never used
our system. These participants were recommended by experts from
our earlier formative study, based on our inclusion criteria—namely,
having at least three years of experience in clinical trial design and
having completed at least one full trial cycle. To ensure objectivity, we
did not allow the experts to contact the participants directly; instead, we
reached out via email or phone. Additionally, participants came from
different hospitals, enhancing the independence and generalizability of
their feedback. Among them, three were male and two were female
clinicians, with an average age of 41 (ranging from 26 to 44). Their
average experience in clinical trials was 9.4 years (ranging from 3
to 21 years). All of them specialized in kidney-related fields, as we
intended to use the sepsis-associated acute kidney injury (introduced in
Case II in Sec.6.2), a common and severe illness, as their exploration
scenario. As eligibility criteria, outcomes, and detailed characteristics
represent fundamental components of eligibility criteria designs, our
interview specifically investigated how the Criterion-Outcome Explo-
ration View and Detailed Characteristic Exploration View can facilitate
the exploration and decision-making processes. We began the session
by providing a 10-minute introduction to the research background.
Following that, we demonstrated the system functionality and usage
through Case I for 20 minutes. Next, the experts could familiarize
themselves with the system for 15 minutes. Then, the experts utilized
our system to adjust the eligibility criteria in Case II for 30 minutes.
During the process, we asked the experts to think aloud, allowing us
to record their audio during the exploration process and facilitate our
subsequent analysis. Afterward, we conducted a 12-minute interview
to gather the experts’ feedback on using the system. Lastly, we invited
the experts to complete a questionnaire to rate our system’s usability,
which took approximately three minutes.

System Workflow. We summarized how our two approaches (i.e.,
the knowledge-driven approach and the outcome-driven approach) fa-
cilitate their decision-making process, respectively.

⋄ The knowledge-driven approach. All the experts have emphasized
a key advantage. The knowledge-driven approach allows them to obtain
a precise understanding of the outcomes related to eligibility criteria
that they are familiar with at first. Pe expressed, “Clinicians might
have a general sense of eligibility criteria, but it may not be specific
enough. Therefore, we desire to know its exact outcomes through the
knowledge-driven approach, thus guiding further exploration.” Addi-
tionally, several experts also mentioned that they could avoid examining
too many options in the Outcome View. Pc stated that he could sig-
nificantly reduce the number of options in the Outcome View once he
determined several criteria through his knowledge upfront. Lastly, Pb
emphasized the coherence provided by the knowledge-driven approach.
By adjusting the criteria with his expertise, he expressed greater confi-



dence in maintaining consistency throughout the optimization process.
⋄ The outcome-driven approach. The most prominent advantage

of adopting the outcome-driven approach is quickly exploring and
determining multiple criteria. Additionally, clinicians can fill their
knowledge gaps regarding complex combinations among the eligibility
criteria. Furthermore, the outcome-driven approach can help uncover
more optimal candidates. Initially, Pa established two types of eligibil-
ity criteria: one for what he perceived as the worst-performing group
and the other for the best-performing group. Pa observed a hazard ratio
of 0.79 with a sample size of 3541 in the first group, while the second
group had a smaller sample size of 512 and a lower hazard ratio of
0.59. This discrepancy led him to consider the possibility of better
candidates lying between these two extremes. However, managing
multiple criteria proved challenging, even for experienced clinicians.
Consequently, he adopted the outcome-driven approach to explore addi-
tional points along the spectrum. Finally, we were surprised to discover
that Pd started the exploration process through the outcome-driven ap-
proach. She mentioned that she hoped to prevent her knowledge bias.

“Clinicians might possess similar knowledge bases. If I aim to discover
more promising designs for eligibility criteria, starting the exploration
through the outcome-driven approach could be effective.”

Visual Designs and Interactions. All the experts praised the clear
and user-friendly visual designs and interactions of our system. First,
they highlighted the smooth combination of the three sub-views in the
Criterion-outcome Exploration View, which allowed for easy criterion
setting, candidate outcome examination, and exploration history track-
ing. Pa found the interaction between the Criterion View and Outcome
View to be highly suited to his needs. He expressed, “This explo-
ration approach can also be extended to various stratified research
in the medical field.” Pa and Pe both expressed high appreciation for
the ability to create stages, as it allowed them to effectively organize
and recall different explorations. We evaluated their perception of the
system using the NASA Task Load Index [23], a 7-point scale. First,
the overall system design is not complex, as indicated by the average
scores for mental demand (3.4), physical demand (2.4), effort (2.8),
and frustration (1.8). However, the temporal demand score is 4.6. This
could be attributed to the iterative nature of the exploration process,
where experts engage in repeated iterations. Furthermore, the average
performance score is 1.7 (with scores closer to 1 indicating a higher
level of perceived performance perfection), indicating that the experts
are highly confident of the final result obtained from our system.

Suggestions. Experts offered several suggestions for further en-
hancements. First, they recommended highlighting regions in the Out-
come View to make it easier to identify interesting candidates. Second,
Pe suggested providing greater flexibility in organizing exploration,
such as enabling a hierarchical tree format. Lastly, several experts
proposed automatically recommending potentially important criteria to
ensure they are not overlooked due to knowledge limitations.

8 DISCUSSION

Design Implications. We have identified two important aspects during
the system design process. First, our findings highlight the importance
of supporting clinicians in systematically tracking their iterative ex-
ploration process. In various clinical scenarios, the decision-making
process is always non-linear and exploratory, often requiring back-
tracking, hypothesis refinement, and contextual sense-making [20, 41].
While prior work in visual analytics [52] has emphasized the value of
provenance tracking and cognitive support, our work reinforces these
findings. We observed that allowing clinicians to define their own
reasoning stages and annotate their thought process—through note-
taking and snapshotting—helps externalize reasoning, making it easier
to revisit and replicate successful strategies while avoiding redundant
exploration. Another key implication is the need to support the adaptive
integration of clinical expertise within exploratory decision workflows.
We observed that clinicians often shift between knowledge-driven and
outcome-driven strategies, depending on their evolving goals and do-
main understanding. This echoes findings from VBridge [10], where
clinicians alternated between forward and backward analyses when
collaborating with AI. Our results suggest that such hybrid reasoning

patterns may also apply in broader, non-AI contexts. Therefore, fu-
ture systems should therefore accommodate these fluid transitions and
support flexible, mixed-strategy reasoning.

Generalizability. In this work, we focus on the design of eligibility
criteria in clinical trials, a crucial step before participant enrollment.
However, conducting a clinical trial involves multiple steps [19]. For
instance, clinicians are tasked with patient screening during partici-
pant enrollment to confirm that participants adhere to the trial’s criteria.
Furthermore, after enrollment, they need to conduct experimental proce-
dures and monitor patient conditions. Finally, they will assess adverse
events and interpret the final results. Our system can also be utilized in
several steps. For example, the Criterion-outcome Exploration View
can help clinicians organize and analyze the final treatment effective-
ness of different subgroups. Beyond clinical trials, our system can also
inspire other decision-making scenarios. For example, our system inte-
grates outcome metrics with temporal detailed characteristics. This can
be used for long-term investment allocation. Currently, various models
have been developed to predict how much profit and risk investment
will bring [22]. They allow investors to simulate various investment
allocation strategies and assess the potential outcomes. Investors also
require detailed information (e.g., market context or current investment
trend) with these outcome metrics during their decision-making process.
Additionally, the combination of the knowledge-driven and outcome-
driven approaches can allow them to better leverage their prior domain
knowledge as well as data-driven techniques.

Scalability. First, scalability issues can arise in the Outcome View.
When the number of criteria or possible adjustments for each crite-
rion increases, the number of criterion candidates will grow rapidly.
However, since experts’ initial exploration focuses on understanding
the overall distribution in the scatter plot, even with a high number of
criterion candidates, they can explore based on distribution without
needing to examine individual candidates. Thus, the candidate count
does not hinder their exploration. Additionally, our system allows clini-
cians to take an iterative approach. They can start by avoiding overly
granular adjustments for each eligibility criterion. After gaining insight
into the appropriate adjustment range, they can then fine-tune the cri-
teria more precisely. In the future, we plan to introduce a sampling
approach. When data volumes are large, uniform sampling initially
will not compromise users’ judgment of the overall distribution. As
users refine their selections, we can gradually reintroduce previously
hidden candidates. This method can ensure smooth exploration while
maintaining the system’s rendering capabilities. Scalability issues may
also arise in the Exploration View with numerous exploration records,
making it difficult for experts to grasp the overall context. Currently,
we allow clinicians to specify important stages. In the future, we could
add features like hierarchical organization of exploration history.

Limitations. Firstly, our system incorporated five outcome metrics
based on our literature survey and expert interviews. While we ex-
panded the metrics compared to previous tools, some suggested metrics
were not included due to the dataset limitation. Incorporating more
relevant metrics in the system can be a future work. For example,
detailed heart-related risk metrics could provide important insights
into cardiovascular complications and help better assess patient safety
during trials. Secondly, our system is currently limited to examining
kidney and liver details from EHR data. Clinicians may need to explore
more detailed information and define a broader spectrum of risk events,
which presents an opportunity for future enhancements.

9 CONCLUSION

In this work, we proposed TrialCompass, a visual analytics system to
assist clinicians in designing eligibility criteria for clinical trials. We
developed a novel workflow that enables exploration of eligibility cri-
teria through both knowledge-driven and outcome-driven approaches.
Additionally, we integrated a history-tracking feature to support clini-
cians in their iterative design process. Using the MIMIC IV dataset, we
conducted expert interviews and case studies, uncovering new insights
for eligibility criteria in two major diseases. Finally, we highlighted
several research opportunities that arise from applying visualization
techniques to enhance clinical trial workflows.
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