

CommonsenseVIS: Visualizing and Understanding Commonsense Reasoning Capabilities of Natural Language Models

Xingbo Wang, Renfei Huang, Zhihua Jin, Tianqing Fang, Huamin Qu

Cornell University

Commonsense knowledge describes the general facts and beliefs about the world that are obvious and intuitive to most humans

"My parents are older than me"

"Take an umbrella when it rains"

"Lemons are sour"

"Cows say moo"

. . .

VIS 2023

Commonsense knowledge describes the general facts and beliefs about the world that are obvious and intuitive to most humans

It can be generally presented as graphs

Equipping machines with humanlike commonsense reasoning abilities is a longstanding challenging topic in NLP. Researchers have constructed commonsense QA benchmarks for developing language models

Social IQA

In the school play, Robin played a hero in the struggle to the death with the angry villain. How would others feel afterwards?

A. sorry for the villain **B. Hopeful that Robin will succeed** C. Like Robin should lose

Commonsense QA

Where on a river can you hold a cup upright to catch water on a sunny day **A. waterfall**, B. bridge, C. valley, D. pebble, E. mountain

SWAG

On stage, a woman takes a seat at the piano. She

- A. sits on a bench as her sister plays with the doll.
- B. smiles with someone as the music plays.
- C. is in the crowd, watching the dancers.
- D. nervously sets her fingers on the keys.

Current language models with billions of parameters achieve impressive results on commonsense benchmarks. However, they lack interpretability and transparency, which hinders model debugging, development, and deployment

Language models

GPT-4 GI	Llama PT-3
PaLM	ERNIE
FLAN	ELMO BERT
LaMDA	RoBERTa
Megatron-LN	М Т5

- Do LMs know properties of a concept?
- Do LMs merely explore spurious correlation?

Commonsense	QA	
SWAG	Com2Sense	
hellaSWAG	Winograd Schema Challenge (WSC)	
Social IQA		

Commonsense benchmarks

What **commonsense knowledge** language models have **learned and used** in the reasoning process?

VIS 2023

Motivation Understanding language models' reasoning process

Feature attributions quantify the importance of input features (e.g., words and phrases) to the model outputs

Limitations

1. Cannot reveal models' relational reasoning over concepts in different contexts

Q1: do LMs know the **relations** between **adults** and **office**

Q2: do LMs know the **context** of using **glue sticks**

Motivation Understanding language models' reasoning process

Feature attributions quantify the importance of input features (e.g., words and phrases) to the model outputs

Limitations

2. Difficult to scale up to efficiently support highlevel abstractions of model behavior

Complexity and vastness of commonsense knowledge space

Our solution Model contextualization via knowledge graph

We employ a **knowledge graph** to derive implicit commonsense in QA instances as contexts. Then, we use it to align model behavior with human reasoning through **multi-level interactive visualizations**.

We use ConceptNet to contextualize model behavior on concepts and relations in commonsense QA (CSQA) dataset

Step 1: extract relevant commonsense knowledge

Extract the reasoning paths with ConceptNet concepts and relations to connect the question concept to the target concept

Identify words ("**model concepts**") that significantly influence the model prediction

Step 2: align model behavior with ConceptNet knowledge

Feature importance

A man wants air conditioning while we watches the game on Saturday, where will it likely be installed?

Model behavior contextualization

	cor	ncept alignment	
Concept	Net concepts		Model concepts
man	watch game	want	the will
while	likely	air conditioning	on what
Saturday	install		it
	rela	ation alignment	
		transformation (AtLocation)	
Original questi stems (QS)	on Original target concepts (TC)		sformed QS Tranformed T(

Concept alignment

Compare differences between the model concepts and the ConceptNet concepts

Relation alignment

Relations can be modeled by translations in the model embedding space

Step 3: facilitate exploration through multi-level interactive visualization

Interactive visualization

Support multi-level exploration of model behavior following an overview-to-detail flow

Model probing & editing

Support interactive model probing by instance manipulation and enable instance bookmarking for model editing & refinement

CommonsenseVIS User interface

Summarize global-level model performance

(A) Global View Summarize model performance distribution on instances and relations

CommonsenseVIS User interface – Global View

The Global View adopts different projection strategies and group question stems and target concepts (i.e., answers) according to different criteria

UMAP projection with relation types as supervision signals

Filter out relations by clicking the green bar

Correctness coloring

Assess relation learning and examine error distribution of instances

CommonsenseVIS User interface

Summarize global-level model performance

Align model behavior with ConceptNet knowledge across subsets

(A) Global View Summarize model performance distribution on instances and relations

(B) Subset View Check alignment of model behavior with ConceptNet knowledge in different subsets

CommonsenseVIS User interface Align model behavior with Summarize global-level Instance-level ConceptNet knowledge model performance understanding and probing across subsets CommonsenseVis D Model editing \times Global View 0 Color: R Projection: Relation x Transformed Relations Question Δ (A) Global View (C) Instance View model result model result around truth Color legend Ould Break After edit Before edit atlocation Summarize model Provide local causes capableof She was always helping at the senior center, it bro happiness happiness satisfaction performance hassubeven abt her what? explanations and relatedto Jenny enjoyed helping people. It brought her a gre antonym satisfactio satisfaction enjoyment distribution on enable interactive at deal of what? partof usedfor Why would you be watching tv instead of doing so laziness wasting time instances and model probing desires mething else others What to kids do for boredom on a ramo? skateboard skateboard fire game hasproperty relations How might releasing energy that has built up feel? wonderful wonderful exhaustion cause see favorite : What would you do if you have curiosity but are blin analyse how d and paralyzed What is it called when two people in love have child Subset View B procreate matrimony (B) Subset View (D) Model Editing What is the thing that is agitated in your head when sexual stimul happiness happines Check alignment Question Concepts car fox applying for ation Panel crab. apple_tree. lizard. Id weasel food, committing mals, dogs, wood, having_fur Traveling from new place to new place is likely to be exhilarating exhausting cause exhilaration of model behavior Support model with ConceptNet editing on Reload edited mode Question Stems man want john plavin use wanted need john count to, a, the, where, you, o what, a, to, where, the, of, yo ere a what to the roo bookmarked knowledge in diting acc. (9/9) different subsets instances ataset acc. (pre-edit) 71.01% Dataset acc. (post-edit) 70.93% Target Concepts drawer, office_building, attic new vork city de race track, pocket, toronto, u hestra library classroon table refrigerator mall bac desk drawer cabinet listen tr

CommonsenseVIS Model editing

After identifying model deficits in particular instances, we use neural networks [1] to modify original model parameters (from θ to θ') that can

- correct problematic model answers ("**reliability**") (x_e, y_e)
- correct other semantically-equivalent questions ("generality") (x'_e, y'_e)
- without affecting unrelated knowledge much ("locality") (x_{loc})

 $L_e = -\log p_{\theta'}(y'_e | x'_e) \qquad L_{loc} = KL(p_{\theta} (\cdot | xloc) || p_{\theta'}(\cdot | xloc))$

 $L_{\text{total}} = W \cdot L_e + L_{loc}$

Input	Original output	Edited output
Who is the US president?	Donald Trump	Joe Biden
Who is the POTUS?	Donald Trump	Joe Biden
Who is the president of France?	Emmanuel Macron	Emmanuel Macron

[1] Mitchell, E., Lin, C., Bosselut, A., Finn, C., & Manning, C. D. (2022). Fast model editing at scale. ICLR.

Case study: UnifiedQA-V2 model on the validation set of CSQA dataset

UnifiedQA-V2 is an open-source, general QA model that has been pre-trained across various QA datasets, showing great generalization capabilities **CSQA validation set** contains 1,221 multiple-choice commonsense QA instances

Case Study

Probe model limitations in understanding relation contexts via instance exploration, editing, and querying

Global Summary

"AtLocation" is the largest relation group whose question stem and target concept clusters share good correspondence under the *"Relation X Transformed"* projection scheme. It implies a good learning of *"AtLocation"* in general

Relation X transformed mode + relation coloring scheme

When the model fails to reason about the contexts of "*AtLocation*"? Under the "**Correctness**" color scheme, there is a group of dense red dots (with low accuracy) at the bottom

Qestion concept - F air_conditioning

A man wants <u>air conditionin</u> while we watches the game on Saturday, where w A man likely be installed? Saturd

А	car
В	house
С	offices
D	park
E	movie theatre

sub Relation X transformed mode + correctness coloring scheme

Case Study

Probe model limitations in u instance exploration, editing

Subset exploration

Question stems fall into three clusters with varied accuracies (as suggested by the green bars). The *leftmost cluster* has the lowest accuracy yet a similarly high question stem hit ratio

The top model concepts are not so meaningful (e.g., *a, the, to, you*). The model seems to frequently rely on superficial information to answer questions

Case Study

Probe model limitations in understanding relation contexts via instance exploration, editing, and querying

A man wants air conditioning while we watch television on Saturday, where will it likely be installed?

А car

В

Е

house

movie theatre

ground truth

model result

D park

Model editing panel

Discussion & future work

Human-AI alignment with contextualization

- Use external knowledge graph
- Exploration-Explanation-Editing (3E) posthoc model analysis

Commonsense knowledge bases for contextualization

- **Coverage** of knowledge graphs
- Future work
 - Integrate other knowledge graphs for other CQA datasets (e.g., ATOMIC for Social IQA)
 - Integrate other types of knowledge representations (e.g., arithmetic and logical operations)

Discussion & future work

Limitations

- Commonsense knowledge extraction & alignment
 - Linear transformation of input-output embeddings
- Model behavior probing reliability
- Handle complex questions with multiple plausible answers and explanations

CommonsenseVIS: Visualizing and Understanding Commonsense Reasoning Capabilities of Natural Language Models

Xingbo Wang, Renfei Huang, Zhihua Jin, Tianqing Fang, Huamin Qu

Xingbo Wang

✓ xingbo.wang@connect.ust.hk

https://andy-xingbowang.com

Cornell University

UNIVERSITY OF SCIENCE

Model contextualization

Project page

https://andy-xingbowang.com/commonsenseVIS

Homepage

https://andy-xingbowang.com/